Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiotic dosing in critically ill patients with acute kidney injury

Abstract

A common cause of acute kidney injury (AKI) is sepsis, which makes appropriate dosing of antibiotics in these patients essential. Drug dosing in critically ill patients with AKI, however, can be complicated. Critical illness and AKI can both substantially alter pharmacokinetic parameters as compared with healthy individuals or patients with end-stage renal disease. Furthermore, drug pharmacokinetic parameters are highly variable within the critically ill population. The volume of distribution of hydrophilic agents can increase as a result of fluid overload and decreased binding of the drug to serum proteins, and antibiotic loading doses must be adjusted upwards to account for these changes. Although renal elimination of drugs is decreased in patients with AKI, residual renal function in conjunction with renal replacement therapies (RRTs) result in enhanced drug clearance, and maintenance doses must reflect this situation. Antibiotic dosing decisions should be individualized to take into account patient-related, RRT-related, and drug-related factors. Efforts must also be made to optimize the attainment of antibiotic pharmacodynamic goals in this population.

Key Points

  • Altered drug pharmacokinetics in critically ill patients with acute kidney injury (AKI) and heterogeneous renal replacement therapy (RRT) techniques in intensive care units preclude standardized antibiotic dosing

  • Most critically ill patients with AKI exhibit altered antibiotic pharmacokinetics that necessitate increased doses in spite of decreased renal clearance, particularly when serious infections are implicated

  • Drug dosing decisions must take into account pharmacodynamic as well as pharmacokinetic considerations

  • Clinicians should compare their RRT protocols to those in published guidelines and ensure that their recommendations are applicable to the individual patient's clinical situation

  • Hybrid RRTs require the same antibiotic dosing alterations as do continuous RRTs, but for hybrid therapies the dose timing must also be considered

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Choi, G. et al. Principles of antibacterial dosing in continuous renal replacement therapy. Crit. Care Med. 37, 2268–2282 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Li, A. M. et al. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J. Antimicrob. Chemother. 64, 929–937 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Boucher, B. A., Wood, G. C. & Swanson, J. M. Pharmacokinetic changes in critical illness. Crit. Care Clin. 22, 255–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Stechmiller, J. K., Treloar, D. & Allen, N. Gut dysfunction in critically ill patients: a review of the literature. Am. J. Crit. Care 6, 204–209 (1997).

    CAS  PubMed  Google Scholar 

  6. Okabe, H. et al. The increased intestinal absorption rate is responsible for the reduced hepatic first-pass extraction of propranolol in rats with cisplatin-induced renal dysfunction. J. Pharm. Pharmacol. 55, 479–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hughes, C. A. & Dowling, R. H. Speed of onset of adaptive mucosal hypoplasia and hypofunction in the intestine of parenterally fed rats. Clin. Sci. (Lond.) 5, 317–327 (1980).

    Article  Google Scholar 

  8. Fagerman, K. E., McGuigan, D. & Pixley, B. Potential interaction between enteral feeding solutions and oral tetracycline. Nutr. Clin. Pract. 1, 257–258 (1986).

    Article  Google Scholar 

  9. Wright, D. H., Pietz, S. L., Konstantinides, F. N. & Rotschafer, J. C. Decreased in vitro fluoroquinolone concentrations after admixture with an enteral feeding formulation. J. Parenter. Enteral Nutr. 24, 42–48 (2000).

    Article  CAS  Google Scholar 

  10. Mueller, B. A., Brierton, D. G., Abel, S. R. & Bowman, L. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob. Agents Chemother. 38, 2101–2105 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim, S. G., Sawyerr, A. M., Hudson, M., Sercombe, J. & Pounder, E. Short report: the absorption of fluconazole and itraconazole under conditions of low intragastric acidity. Aliment. Pharmacol. Ther. 7, 317–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Fülöp, T. et al. Volume-related weight gain and subsequent mortality in acute renal failure patients treated with continuous renal replacement therapy. ASAIO J. 56, 333–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Schrier, R. W. AKI: fluid overload and mortality. Nat. Rev. Nephrol. 5, 485 (2009).

    Article  PubMed  Google Scholar 

  14. Mehta, R. L. et al. Nephrology consultation in acute renal failure: does timing matter? Am. J. Med. 113, 527–528 (2002).

    Article  Google Scholar 

  15. Edwards, K. D. Creatinine space as a measure of total body water in anuric subjects, estimated after single injection and haemodialysis. Clin. Sci. 18, 455–464 (1959).

    CAS  PubMed  Google Scholar 

  16. Roberts, J. A. & Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 37, 840–850 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, G. J., Tang, J. J., Lin, B. S., Kong, C. W. & Lee, T. Y. Factors affecting gentamicin pharmacokinetics in septic patients. Acta Anaesthesiol. Scand. 43, 726–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Roberts, J. A. et al. Using population pharmacokinetics to determine gentamicin dosing during extended daily diafiltration in critically ill patients with acute kidney injury. Antimicrob. Agents Chemother. 54, 3635–3640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Triginer, C. et al. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med. 16, 303–306 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Pai, M. P. & Bearden, D. T. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy 27, 1081–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Falagas, M. E. & Karageorgopoulos, D. E. Adjustment of dosing of antimicrobial agents for bodyweight in adults. Lancet 375, 248–251 (2010).

    Article  PubMed  Google Scholar 

  22. Fry, D. The importance of antibiotic pharmacokinetics in critical illness. Am. J. Surg. 172, 20S–25S (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Vanholder, R., Van Landschoot, N., De Smet, R., Schoots, A. & Ringoir, S. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney Int. 33, 996–1004 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Crandon, J. L., Banevicius, M. A. & Nicolau, D. P. Pharmacodynamics of tigecycline against phenotypically diverse Staphylococcus aureus isolates in a murine thigh model. Antimicrob. Agents Chemother. 53, 1165–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Meier-Hellman, A. et al. Epinephrine impairs splanchnic perfusion in septic shock. Crit. Care Med. 25, 399–404 (1997).

    Article  Google Scholar 

  26. Vilay, A. M., Churchwell, M. D. & Mueller, B. A. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit. Care 12, 235 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mueller, B. A., Scarim, S. K. & Macias, W. L. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am. J. Kidney Dis. 21, 172–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Giles, L. J. et al. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit. Care Med. 28, 632–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ververs, T. F. et al. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit. Care Med. 28, 3412–3416 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Macias, W. L., Mueller, B. A. & Scarim, S. K. Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance. Clin. Pharmacol. Ther. 50, 688–694 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Pea, F., Poz, D., Viale, P., Pavan, F. & Furlanut, M. Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J. Antimicrob. Chemother. 58, 380–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Pea, F., Viale, P., Pavan, F. & Furlanut, M. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin. Pharmacokinet. 46, 997–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, C., Höcherl, K., Schweda, F. & Bucher, M. Proinflammatory cytokines cause down-regulation of renal chloride entry pathways during sepsis. Crit. Care Med. 35, 2110–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, H., Frassetto, L. & Benet, L. Z. Effects of renal failure on drug transport and metabolism. Pharmacol. Ther. 109, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki, H., Sekine, T. & Endou, H. The multispecific organic anion transporter family: properties and pharmacological significance. Trends Pharmacol. Sci. 25, 654–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Bergner, R. et al. Fluconazole dosing in continuous veno-venous haemofiltration (CVVHF): need for a high daily dose of 800 mg. Nephrol. Dial. Transplant. 21, 1019–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Schetz, M. Drug dosing in continuous renal replacement therapy: general rules. Curr. Opin. Crit. Care 13, 645–651 (2007).

    Article  PubMed  Google Scholar 

  38. Joy, M. S., Matzke, G. R., Frye, R. F. & Palevsky, P. M. Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am. J. Kidney Dis. 31, 1019–1027 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Clark, W. R. & Ronco, C. CRRT efficiency and efficacy in relation to solute size. Kidney Int. Suppl. 72, S3–S7 (1999).

    Article  CAS  Google Scholar 

  40. Churchwell, M. D. & Mueller, B. A. Drug dosing during continuous renal replacement therapy. Semin. Dial. 22, 185–188 (2009).

    Article  PubMed  Google Scholar 

  41. Bouman, C. S. et al. Discrepancies between observed and predicted continuous venovenous hemofiltration removal of antimicrobial agents in critically ill patients and the effects on dosing. Intensive Care Med. 32, 2013–2019 (2006).

    Article  PubMed  Google Scholar 

  42. Golper, T. A. Drug removal during continuous hemofiltration or hemodialysis. Contrib. Nephrol. 93, 110–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Uchino, S. et al. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (BEST kidney) investigators. Intensive Care Med. 33, 1563–1570 (2007).

    Article  PubMed  Google Scholar 

  44. Jeffrey, R. F. et al. A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif. Organs 18, 425–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, Z., Letteri, J. J., Clark, W. R., Ronco, C. & Gao, D. Operational characteristics of continuous renal replacement modalities used for critically ill patients with acute kidney injury. Int. J. Artif. Organs 31, 525–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. DeSoi, C. A., Sahm, D. F. & Umans, J. G. Vancomycin elimination during high-flux hemodialysis: kinetic model and comparison of four membranes. Am. J. Kidney Dis. 20, 354–360 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Agarwal, R. & Toto, R. D. Gentamicin clearance during hemodialysis: a comparison of high-efficiency cuprammonium rayon and conventional cellulose ester hemodialyzers. Am. J. Kidney Dis. 22, 296–299 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Scott, M. K., Mueller, B. A. & Clark, W. R. Vancomycin mass transfer characteristics of high-flux cellulosic dialysers. Nephrol. Dial. Transplant. 12, 2647–2653 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Ahern, J. W., Lai, C., Rebuck, J. A., Possidente, C. J. & Weidner, M. Experience with vancomycin in patients receiving slow low efficiency dialysis. Hosp. Pharm. 39, 138–143 (2004).

    Article  Google Scholar 

  50. Fiaccadori, E. et al. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit. Care Med. 32, 2437–2442 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Choi, G. et al. The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration: an in vitro study of levofloxacin. Int. J. Antimicrob. Agents 24, 468–472 (2004).

    CAS  PubMed  Google Scholar 

  52. Tian, Q. et al. Effect of drug concentration on adsorption of levofloxacin by polyacrylonitrile haemofilters. Int. J. Antimicrob. Agents 28, 147–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Uchino, S., Cole, L., Morimatsu, H., Goldsmith, D. & Bellomo, R. Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med. 28, 1664–1667 (2002).

    Article  PubMed  Google Scholar 

  54. Clark, W. R., Turk, J. E., Kraus, M. A. & Gao, D. Dose determinants in continuous renal replacement therapy. Artif. Organs 27, 815–820 (2003).

    Article  PubMed  Google Scholar 

  55. Mueller, B. A., Pasko, D. A. & Sowinski, K. M. Higher renal replacement therapy dose delivery influences on drug therapy. Artif. Organs 27, 808–814 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Aronoff, G. R. et al. Drug prescribing in renal failure: dosing guidelines for adults and children 5th edn (American College of Physicians, Philadelphia, 2007).

    Google Scholar 

  57. Ambrose, P. G. et al. Pharmacokinetics: pharmacodynamics of antimicrobial therapy: it's not just for mice anymore. Clin. Infect. Dis. 44, 79–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Owens, R. C. Jr & Shorr, A. F. Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies. Am. J. Health Syst. Pharm. 66, S23–S30 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Bhavnani, S. M., Rubino, C. M., Ambrose, P. G. & Drusano, G. L. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin. Infect. Dis. 50, 1568–1574 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Vilay, A. M. et al. Daptomycin pharmacokinetics in critically ill patients receiving continuous venovenous hemodialysis. Crit. Care Med. 39, 19–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Churchwell, M. D., Pasko, D. A. & Mueller, B. A. Daptomycin clearance during modeled continuous renal replacement therapy. Blood Purif. 24, 548–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Turnidge, J. Pharmacodynamics and dosing of aminoglycosides. Infect. Dis. Clin. North Am. 17, 503–528 (2003).

    Article  PubMed  Google Scholar 

  63. Beaucaire, G. et al. Clinical and bacteriological efficacy, and practical aspects of amikacin given once daily for severe infections. J. Antimicrob. Chemother. 27 (Suppl. C), 91–103 (1991).

    Article  PubMed  Google Scholar 

  64. Marik, P. E., Lipman, J., Kobilski, S. & Scribante, J. A prospective randomized study comparing once- versus twice-daily amikacin dosing in critically ill adult and paediatric patients. J. Antimicrob. Chemother. 28, 753–764 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Kielstein, J. T. et al. Dosing of daptomycin in intensive care unit patients with acute kidney injury undergoing extended dialysis—a pharmacokinetic study. Nephrol. Dial. Transplant. 25, 1537–1541 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Perrott, J., Mabasa, V. H. & Ensom, M. H. Comparing outcomes of meropenem administration strategies based on pharmacokinetic and pharmacodynamic principles: a qualitative systematic review. Ann. Pharmacother. 44, 557–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Langgartner, J., Vasold, A., Glück, T., Reng, M. & Kees, F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med. 34, 1091–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Mariat, C. et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit. Care 10, R26 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Roberts, J. A. et al. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int. J. Antimicrob. Agents 36, 332–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Schetz, M. Drug dosing in continuous renal replacement therapy: general rules. Curr. Opin. Crit. Care 13, 645–651 (2007).

    Article  PubMed  Google Scholar 

  71. Choi, G. et al. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 30, 195–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Reetze-Bonorden, P., Böhler, J. & Keller, E. Drug dosage in patients during continuous renal replacement therapy: pharmacokinetic and therapeutic considerations. Clin. Pharmacokinet. 24, 362–379 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Kroh, U. F. Drug administration in critically ill patients with acute renal failure. New Horiz. 3, 748–759 (1995).

    CAS  PubMed  Google Scholar 

  74. Mueller, B. A. & Smoyer, W. E. Challenges in developing evidence-based drug dosing guidelines for adults and children receiving renal replacement therapy. Clin. Pharmacol. Ther. 86, 479–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Li, A. M. et al. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J. Antimicrob. Chemother. 64, 929–937 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Wingender, W. et al. Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. Eur. J. Clin. Microbiol. 3, 355–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Fish, D. N., Bainbridge, J. L. & Peloquin, C. A. Variable disposition of ciprofloxacin in critically ill patients undergoing continuous arteriovenous hemodiafiltration. Pharmacotherapy 15, 236–245 (1995).

    CAS  PubMed  Google Scholar 

  78. Wallis, S. C., Mullany, D. V., Lipman, J., Rickard, C. M. & Daley, P. J. Pharmacokinetics of ciprofloxacin in ICU patients on continuous veno-venous hemodiafiltration. Intensive Care Med. 27, 665–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Chien, S. C. et al. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother. 41, 2256–2260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chow, A. T. et al. Safety and pharmacokinetics of multiple 750-milligram doses of intravenous levofloxacin in healthy volunteers. Antimicrob. Agents Chemother. 45, 2122–2125 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Malone, R. S., Fish, D. N., Abraham, E. & Teitelbaum, I. Pharmacokinetics of levofloxacin and ciprofloxacin during continuous renal replacement therapy in critically ill patients. Antimicrob. Agents Chemother. 45, 2949–2954 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guenter, S. G., Iven, H., Boos, C., Bruch, H. P. & Muhl, E. Pharmacokinetics of levofloxacin during continuous venovenous hemodiafiltration and continuous venovenous hemofiltration in critically ill patients. Pharmacotherapy 22, 175–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Lode, H., Grunert, K., Koeppe, K. P. & Langmaack, H. Pharmacokinetic and clinical studies with amikacin, a new aminoglycoside antibiotic. J. Infect. Dis. 134, S316–S322 (1976).

    Article  CAS  PubMed  Google Scholar 

  84. Kinowski, J. M. et al. Multiple-dose pharmacokinetics of amikacin and ceftazidime in critically ill patients with septic multiple-organ failure during intermittent hemofiltration. Antimicrob. Agents Chemother. 37, 464–473 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Benvenuto, M., Benziger, D. P., Yankelev, S. & Vigliani, G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob. Agents Chemother. 50, 3245–3249 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nilsson-Ehle, I., Hutchison, M., Haworth, S. J. & Norrby, S. R. Pharmacokinetics of meropenem compared to imipenem–cilastatin in young, healthy males. Eur. J. Clin. Microbiol. Infect. Dis. 10, 85–88 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Krueger, W. A. Evaluation by Monte Carlo simulation of the pharmacokinetics of two doses of meropenem administered intermittently or as a continuous infusion in healthy volunteers. Antimicrob. Agents Chemother. 49, 1881–1889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dreetz, M. et al. Serum bactericidal activities and comparative pharmacokinetics of meropenem and imipenem–cilastatin. Antimicrob. Agents Chemother. 40, 105–109 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krueger, W. A. et al. Pharmacokinetics of meropenem in critically ill patients with acute renal failure treated by continuous hemodiafiltration. Antimicrob. Agents Chemother. 42, 2421–2424 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Occhipinti, D. J. et al. Pharmacokinetics and pharmacodynamics of two multiple-dose piperacillin–tazobactam regimens. Antimicrob. Agents Chemother. 41, 2511–2517 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Capellier, G. et al. Removal of piperacillin in critically ill patients undergoing continuous venovenous hemofiltration. Crit. Care Med. 26, 88–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. van der Werf, T. S., Mulder, P. O., Zijlstra, J. G., Uges, D. R. & Stegeman, C. A. Pharmacokinetics of piperacillin and tazobactam in critically ill patients with renal failure, treated with continuous veno-venous hemofiltration (CVVH). Intensive Care Med. 23, 873–877 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Blouin, R. A., Bauer, L. A., Miller, D. D., Record, K. E. & Griffen, W. O. Jr. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob. Agents Chemother. 21, 575–580 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Healy, D. P., Polk, R. E., Garson, M. L., Rock, D. T. & Comstock, T. J. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob. Agents Chemother. 31, 393–397 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boeckh, M. et al. Pharmacokinetics and serum bactericidal activity of vancomycin alone and in combination with ceftazidime in healthy volunteers. Antimicrob. Agents Chemother. 32, 92–95 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kielstein, J. T. et al. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit. Care Med. 34, 51–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. DelDot, M. E., Lipman, J. & Tett, S. E. Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br. J. Clin. Pharmacol. 58, 259–268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Trotman, R. L., Williamson, J. C., Shoemaker, D. M. & Salzer, W. L. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin. Infect. Dis. 41, 1159–1166 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Heintz, B. H., Matzke, G. R. & Dager, W. E. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy 29, 562–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Gilbert, D. N. (Ed.) The Sanford Guide to Antimicrobial Therapy 40th edn (Sanford, Sperryville, 2010).

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

R. F. Eyler and B. A. Mueller contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Bruce A. Mueller.

Ethics declarations

Competing interests

R. F. Eyler has received research funding from Merck and Roche. B. A. Mueller has received research funding from Cubist Pharmaceuticals, Merck, and Roche, and is a member of the speaker's bureaus for Amgen, Gambro, and Cubist Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyler, R., Mueller, B. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol 7, 226–235 (2011). https://doi.org/10.1038/nrneph.2011.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing