Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transplantation tolerance through mixed chimerism

Abstract

The major factors that limit the success of organ transplantation are the host immune response to the foreign graft and the adverse effects of the chronic immunosuppressive therapy required to suppress this immune response. Deliberately establishing tolerance towards the donor tissue by reprogramming the immune system of the recipient thus holds great promise in improving organ transplant survival and eliminating the untoward effects of chronic drug therapy. The transplantation of donor bone marrow into recipients who are appropriately conditioned to allow development of either full or mixed chimerism has long been recognized to effectively induce donor-specific tolerance. Despite the demonstrated effectiveness of this technique, use of the mixed chimerism strategy in regular clinical practice has been hampered by the toxic side effects inherent to conventional bone marrow transplantation protocols. This Review addresses recent advances in preclinical and clinical studies inducing transplantation tolerance through mixed chimerism and discusses both the potential and the challenges of this approach.

Key Points

  • The life-long immunosuppressive drug therapy required by organ transplant recipients is associated with severe morbidity and does not effectively prevent chronic rejection; donor-specific tolerance could obviate these problems

  • The induction of mixed chimerism through the transplantation of donor hematopoietic stem cells into the recipient is an effective approach towards achieving tolerance

  • Although the mixed chimerism approach has shown success in humans, its widespread clinical application has been impeded by the toxic side effects associated with current bone marrow transplantation protocols

  • Work in mouse models has progressed by moving from non-myeloablative towards non-cytoreductive bone marrow transplantation protocols

  • Translation of the work in murine models to large animal (including non-human primate) models is slowed by a number of factors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of selected milestones in the development of the mixed chimerism approach.
Figure 2: The concept of tolerance through mixed chimerism.
Figure 3: The strategy of combining TREG cell therapy with the mixed chimerism approach: the TREG-chimerism protocol.

Similar content being viewed by others

References

  1. Owen, R. D. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400–401 (1945).

    Article  CAS  PubMed  Google Scholar 

  2. Billingham, R. E., Brent, L. & Medawar, P. B. “Actively acquired tolerance” of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Main, J. M. & Prehn, R. T. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J. Natl Cancer Inst. 1023–1028 (1955).

  4. Dey, B., Sykes, M. & Spitzer, T. R. Outcomes of recipients of both bone marrow and solid organ transplants. A review. Medicine (Baltimore) 77, 355–369 (1998).

    Article  CAS  Google Scholar 

  5. Sayegh, M. H. et al. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann. Intern. Med. 114, 954–955 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Helg, C. et al. Renal transplantation without immunosuppression in a host with tolerance induced by allogeneic bone marrow transplantation. Transplantation 58, 1420–1421 (1995).

    Google Scholar 

  7. Jacobsen, N., Taaning, E., Ladefoged, J., Kristensen, J. K. & Pedersen, F. K. Tolerance to an HLA-B, DR disparate kidney allograft after bone-marrow transplantation from same donor. Lancet 343, 800 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Sorof, J. M. et al. Renal transplantation without chronic immunosuppression after T cell-depleted, HLA-mismatched bone marrow transplantation. Transplantation 59, 1633–1635 (1995).

    CAS  PubMed  Google Scholar 

  9. Butcher, J. A. et al. Renal transplantation for end-stage renal disease following bone marrow transplantation: a report of six cases, with and without immunosuppression. Clin. Transplant. 13, 330–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sellers, M. T. et al. Tolerance in renal transplantation after allogeneic bone marrow transplantation-6-year follow-up. Transplantation 71, 1681–1683 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Svendsen, U. G. et al. Transplantation of a lobe of lung from mother to child following previous transplantation with maternal bone marrow. Eur. Respir. J. 8, 334–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Kadry, Z. et al. Living donor liver transplantation and tolerance: a potential strategy in cholangiocarcinoma. Transplantation 76, 1003–1006 (2003).

    Article  PubMed  Google Scholar 

  13. Ildstad, S. T. & Sachs, D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Starzl, T. E. et al. Systemic chimerism in human female recipients of male livers. Lancet 340, 876–877 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elwood, E. T. et al. Microchimerism and rejection in clinical transplantation. Lancet 349, 1358–1360 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Ko, S. et al. The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat. Med. 5, 1292–1297 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Cobbold, S. P., Martin, G., Qin, S. & Waldmann, H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323, 164–165 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Sharabi, Y. & Sachs, D. H. Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regimen. J. Exp. Med. 169, 493–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Fehr, T. & Sykes, M. Clinical experience with mixed chimerism to induce transplantation tolerance. Transpl. Int. 21, 1118–1135 (2008).

    Article  PubMed  Google Scholar 

  21. Vincenti, F. et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353, 770–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bonomo, A. & Matzinger, P. Thymus epithelium induces tissue-specific tolerance. J. Exp. Med. 177, 1153–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J.-W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Steinman, R., Hawiger, D. & Nussenzweig, M. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wekerle, T. et al. Mechanisms of tolerance induction through the transplantation of donor hematopoietic stem cells: central versus peripheral. Transplantation 75, 21S–25S (2003).

    Article  PubMed  Google Scholar 

  28. Hakim, F. T. et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sho, M. et al. Requirements for induction and maintenance of peripheral tolerance in stringent allograft models. Proc. Natl Acad. Sci. USA 102, 13230–13235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Markees, T. G. et al. Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4+ T cells, interferon-γ, and CTLA4. J. Clin. Invest. 101, 2446–2455 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuchimoto, Y. et al. Mixed chimerism without whole body irradiation in a large animal model. J. Clin. Invest. 105, 1779–1789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kean, L. S. et al. Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade-based immunosuppression. Am. J. Transplant. 7, 320–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Koporc, Z. et al. Murine mobilized peripheral blood stem cells have a lower capacity than bone marrow to induce mixed chimerism and tolerance. Am. J. Transplant. 8, 2025–2036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat. Med. 6, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Shirasugi, N. et al. Prevention of chronic rejection in murine cardiac allografts: a comparison of chimerism- and nonchimerism-inducing costimulation blockade-based tolerance induction regimens. J. Immunol. 169, 2677–2684 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Ardavin, C., Wu, L., Li, C.-L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J., Park, J., Foss, D. & Goldschneider, I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med. 206, 607–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Agus, D. B., Surh, C. D. & Sprent, J. Reentry of T cells to the adult thymus is restricted to activated T cells. J. Exp. Med. 173, 1039–1046 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Tian, C., Bagley, J., Forman, D. & Iacomini, J. Induction of central tolerance by mature T cells. J. Immunol. 173, 7217–7222 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Tian, C. et al. Induction of transplantation tolerance by combining non-myeloablative conditioning with delivery of alloantigen by T cells. Clin. Immunol. 127, 130–137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian, C. et al. Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen. Clin. Immunol. 136, 174–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat. Immunol. 11, 512–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Klein, L., Roettinger, B. & Kyewski, B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur. J. Immunol. 31, 2476–2486 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Russell, P. S. et al. Tolerance, mixed chimerism, and chronic transplant arteriopathy. J. Immunol. 167, 5731–5740 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Boyse, E. A., Lance, E. M., Carswell, E. A., Cooper, S. & Old, L. J. Rejection of skin allografts by radiation chimaeras: selective gene action in the specification of cell surface structure. Nature 227, 901–903 (1970).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, M. A. et al. Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts. J. Immunol. 165, 6849–6857 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Chan, W. F., Razavy, H., Luo, B., Shapiro, A. M. & Anderson, C. C. Development of either split tolerance or robust tolerance along with humoral tolerance to donor and third-party alloantigens in nonmyeloablative mixed chimeras. J. Immunol. 180, 5177–5186 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Wells, A. D. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat. Med. 5, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lechler, R. I., Garden, O. A. & Turka, L. A. The complementary roles of deletion and regulation in transplantation tolerance. Nat. Rev. Immunol. 3, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sykes, M., Szot, G. L., Swenson, K. & Pearson, D. A. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat. Med. 3, 783–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Tomita, Y., Sachs, D. H., Khan, A. & Sykes, M. Additional mAb injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mAbs and 3 Gy whole body irradiation. Transplantation 61, 469–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Mapara, M. Y. et al. Induction of stable long-term mixed hematopoietic chimerism following nonmyeloablative conditioning with T cell-depleting antibodies, cyclophosphamide, and thymic irradiation leads to donor-specific in vitro and in vivo tolerance. Biol. Blood Marrow Transplant. 7, 646–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantion in mice conditioned with a non-myeloablative regimen. J. Immunol. 153, 1087–1098 (1994).

    CAS  PubMed  Google Scholar 

  57. Slavin, S., Strober, S., Fuks, Z. & Kaplan, H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J. Exp. Med. 146, 34–48 (1977).

    Article  CAS  PubMed  Google Scholar 

  58. Wekerle, T. et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J. Exp. Med. 187, 2037–2044 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wekerle, T. et al. Peripheral deletion after bone marrow transplantation with costimulatory blockade has features of both activation-induced cell death and passive cell death. J. Immunol. 166, 2311–2316 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Adams, A. B. et al. Costimulation blockade, busulfan, and bone marrow promote titratable macrochimerism, induce transplantation tolerance, and correct genetic hemoglobinopathies with minimal myelosuppression. J. Immunol. 167, 1103–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kurtz, J., Ito, H., Wekerle, T., Shaffer, J. & Sykes, M. Mechanisms involved in the establishment of tolerance through costimulatory blockade and BMT: lack of requirement for CD40L-mediated signaling for tolerance or deletion of donor-reactive CD4+ cells. Am. J. Transplant. 1, 339–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Bigenzahn, S. et al. The role of non-deletional tolerance mechanisms in a murine model of mixed chimerism with costimulation blockade. Am. J. Transplant. 5, 1237–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Domenig, C. et al. Roles of deletion and regulation in creating mixed chimerism and allograft tolerance using a nonlymphoablative irradiation-free protocol. J. Immunol. 175, 51–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kurtz, J., Wekerle, T. & Sykes, M. Tolerance in mixed chimerism—a role for regulatory cells? Trends Immunol. 25, 518–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Guo, Z. et al. Long-term survival of intestinal allografts induced by costimulation blockade, busulfan and donor bone marrow infusion. Am. J. Transplant. 3, 1091–1098 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Sykes, M., Szot, G. L., Swenson, K., Pearson, D. A. & Wekerle, T. Separate regulation of peripheral hematopoietic and thymic engraftment. Exp. Hematol. 26, 457–465 (1998).

    CAS  PubMed  Google Scholar 

  67. Nikolic, B., Khan, A. & Sykes, M. Induction of tolerance by mixed chimerism with nonmyeloablative host conditioning: the importance of overcoming intrathymic alloresistance. Biol. Blood Marrow Transplant. 7, 144–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ito, H., Takeuchi, Y., Shaffer, J. & Sykes, M. Local irradiation enhances congenic donor pluripotent hematopoietic stem cell engraftment similarly in irradiated and nonirradiated sites. Blood 103, 1949–1954 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Bachar-Lustig, E., Rachamin, N., Li, H.-W., Lan, F. & Reisner, Y. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat. Med. 1, 1268–1273 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Wekerle, T., Nikolic, B., Pearson, D. A., Swenson, K. G. & Sykes, M. Minimal conditioning required in a murine model of T cell depletion, thymic irradiation and high-dose bone marrow transplantation for the induction of mixed chimerism and tolerance. Transpl. Int. 15, 248–253 (2002).

    Article  PubMed  Google Scholar 

  71. Wekerle, T. et al. Anti-CD154 or CTLA4Ig obviates the need for thymic irradiation in a non-myeloablative conditioning regimen for the induction of mixed hematopoietic chimerism and tolerance. Transplantation 68, 1348–1355 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Wekerle, T., Blaha, P., Langer, F., Schmid, M. & Muehlbacher, F. Tolerance through bone marrow transplantation with costimulation blockade. Transpl. Immunol. 9, 125–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Seung, E. et al. Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 95, 2175–2182 (2000).

    CAS  PubMed  Google Scholar 

  74. Pree, I. et al. CTLA4Ig promotes the induction of hematopoietic chimerism and tolerance independently of indoleamine-2,3-dioxygenase (IDO). Transplantation 83, 663–667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kean, L. S. et al. A cure for murine sickle cell disease through stable mixed chimerism and tolerance induction after nonmyeloablative conditioning and major histocompatibility complex-mismatched bone marrow transplantation. Blood 99, 1840–1849 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Pree, I., Pilat, N. & Wekerle, T. Recent progress in tolerance induction through mixed chimerism. Int. Arch. Allergy Immunol. 144, 254–266 (2007).

    Article  PubMed  Google Scholar 

  77. Ford, M. L. & Larsen, C. P. Translating costimulation blockade to the clinic: lessons learned from three pathways. Immunol. Rev. 229, 294–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wekerle, T., Kurtz, J., Bigenzahn, S., Takeuchi, Y. & Sykes, M. Mechanisms of transplant tolerance induction using costimulatory blockade. Curr. Opin. Immunol. 14, 592–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Kurtz, J. et al. Mechanisms of early peripheral CD4 T cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion, but not regulatory cells. Blood 103, 4336–4343 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Fehr, T., Takeuchi, Y., Kurtz, J., Wekerle, T. & Sykes, M. Early regulation of CD8 T cell alloreactivity by CD4+CD25 T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation. Eur. J. Immunol. 35, 2679–2690 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Fehr, T. et al. Rapid deletional peripheral CD8 T cell tolerance induced by allogeneic bone marrow: role of donor class II MHC and B cells. J. Immunol. 181, 4371–4380 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Fehr, T. et al. Alloreactive CD8 T cell tolerance requires recipient B cells, dendritic cells, and MHC class II. J. Immunol. 181, 165–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Takeuchi, Y. et al. Earlier low-dose TBI or DST overcomes CD8+ T-cell-mediated alloresistance to allogeneic marrow in recipients of anti-CD40L. Am. J. Transplant. 4, 31–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Mollov, J. L. et al. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8 T-cell tolerance. Am. J. Transplant. 10, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taylor, P. A., Lees, C. J., Waldmann, H., Noelle, R. J. & Blazar, B. R. Requirements for the promotion of allogeneic engraftment by anti-CD154 (anti-CD40L) monoclonal antibody under nonmyeloablative conditions. Blood 98, 467–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Haspot, F. et al. Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway. Blood 112, 2149–2155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kurtz, J., Raval, F., Vallot, C., Der, J. & Sykes, M. CTLA-4 on alloreactive CD4 T cells interacts with recipient CD80/86 to promote tolerance. Blood 113, 3475–3484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Durham, M. M. et al. Administration of anti-CD40 ligand and donor bone marrow leads to hematopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J. Immunol. 165, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Gandy, K. L., Domen, J., Aguila, H. & Weissman, I. L. CD8+TCR+ and CD8+TCR– cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 11, 579–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Fugier-Vivier, I. J. et al. Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment. J. Exp. Med. 201, 373–383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Graca, L., Daley, S., Fairchild, P., Cobbold, S. & Waldmann, H. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning. BMC Immunol. 7, 9 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Blaha, P. et al. The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 101, 2886–2893 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Taylor, P. A. et al. Combined effects of calcineurin inhibitors or sirolimus with anti-CD40L mAb on alloengraftment under nonmyeloablative conditions. Blood 100, 3400–3407 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Blaha, P. et al. Short-term immunosuppression facilitates induction of mixed chimerism and tolerance after bone marrow transplantation without cytoreductive conditioning. Transplantation 80, 237–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kurtz, J. et al. Lack of role for CsA-sensitive or Fas pathways in the tolerization of CD4 T cells via BMT and anti-CD40L. Am. J. Transplant. 3, 804–816 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Fehr, T. et al. A CD8 T cell-intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo. Blood 115, 1280–1287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kean, L. S. et al. NK cells mediate costimulation blockade-resistant rejection of allogeneic stem cells during nonmyeloablative transplantation. Am. J. Transplant. 6, 292–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Westerhuis, G., Maas, W. G. E., Willemze, R., Toes, R. E. M. & Fibbe, W. E. Long-term mixed chimerism after immunologic conditioning and MHC-mismatched stem-cell transplantation is dependent on NK-cell tolerance. Blood 106, 2215–2220 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Nierlich, P. N. et al. The role of natural killer T cells in costimulation blockade-based mixed chimerism. Transpl. Int. doi:10.1111/j.1432-22772010.01120.x.

  101. Iwai, T. et al. Regulatory roles of NKT cells in the induction and maintenance of cyclophosphamide-induced tolerance. J. Immunol. 177, 8400–8409 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Riley, J. L., June, C. H. & Blazar, B. R. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30, 656–665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsang, J. Y. et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J. Clin. Invest. 118, 3619–3628 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Joffre, O. et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat. Med. 14, 88–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Joffre, O., Gorsse, N., Romagnoli, P., Hudrisier, D. & van Meerwijk, J. P. M. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 103, 4216–4221 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Pilat, N. et al. Treg-therapy allows mixed chimerism and transplantation tolerance without cytoreductive conditioning. Am. J. Transpl. 10, 751–762 (2010).

    Article  CAS  Google Scholar 

  107. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Sachs, D. H. Tolerance: of mice and men. J. Clin. Invest. 111, 1819–1821 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).

    CAS  PubMed  Google Scholar 

  110. Kuhr, C. et al. Tolerance to vascularized kidney grafts in canine mixed hematopoietic chimeras. Transplantation 73, 1487–1493 (2002).

    Article  PubMed  Google Scholar 

  111. Kuhr, C. S., Yunusov, M., Sale, G., Loretz, C. & Storb, R. Long-term tolerance to kidney allografts in a preclinical canine model. Transplantation 84, 545–547 (2007).

    Article  PubMed  Google Scholar 

  112. Storb, R. et al. Stable mixed chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 94, 2523–2529 (1999).

    CAS  PubMed  Google Scholar 

  113. Storb, R. et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. Blood 94, 1131–1136 (1999).

    CAS  PubMed  Google Scholar 

  114. Tillson, M. et al. Hematopoietic chimerism induces renal and skin allograft tolerance in DLA-identical dogs. Exp. Hematol. 34, 1759–1770 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, C. A. et al. Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model. J. Clin. Invest. 105, 173–181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, C. A. et al. Posttransplantation lymphoproliferative disease in miniature swine after allogeneic hematopoietic cell transplantation: similarity to human PTLD and association with a porcine gammaherpesvirus. Blood 97, 1467–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Cho, P. et al. Risk factors for the development of post-transplant lymphoproliferative disorder in a large animal model. Am. J. Transplant. 4, 1274–1282 (2004).

    Article  PubMed  Google Scholar 

  118. Schmidtko, J. et al. Posttransplant lymphoproliferative disorder associated with an Epstein-Barr-related virus in cynomolgus monkeys. Transplantation 73, 1431–1439 (2002).

    Article  PubMed  Google Scholar 

  119. Kawai, T. et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomologous monkeys. Transplantation 59, 256–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Kawai, T. et al. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 68, 1767–1775 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Kawai, T. et al. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am. J. Transpl. 4, 1391–1398 (2004).

    Article  CAS  Google Scholar 

  122. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawai, T. et al. Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 73, 1757–1764 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Madsen, J. C. Tailoring tolerance to prevent chronic rejection. Transplantation 72, S10–S12 (2001).

    CAS  PubMed  Google Scholar 

  125. Donckier, V. et al. Donor stem cell infusion after non-myeloablative conditioning for tolerance induction to HLA mismatched adult living-donor liver graft. Transpl. Immunol. 13, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Strober, S. Protective conditioning against GVHD and graft rejection after combined organ and hematopoietic cell transplantation. Blood Cells Mol. Dis. 40, 48–54 (2008).

    Article  PubMed  Google Scholar 

  127. Strober, S., Lowsky, R. J., Shizuru, J. A., Scandling, J. D. & Millan, M. T. Approaches to transplantation tolerance in humans. Transplantation 77, 932–936 (2004).

    Article  PubMed  Google Scholar 

  128. Scandling, J. D. et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N. Engl. J. Med. 358, 362–368 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Spitzer, T. R. et al. Combined histocompatible leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68, 480–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Bühler, L. H. et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 74, 1405–1409 (2002).

    Article  PubMed  Google Scholar 

  131. Sykes, M. et al. Mixed lymphohematopoietic chimerism and graft-vs-lymphoma effects are achievable in adult humans following non-myeloablative therapy and HLA-mismatched donor bone marrow transplantation. Lancet 353, 1755–1759 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Pelot, M. R. et al. Lymphohematopoietic graft-vs-host reactions can be induced without graft-vs-host disease in murine mixed chimeras established with a cyclophosphamide-based non-myeloablative conditioning regimen. Biol. Blood Marrow Transplant. 5, 133–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Fudaba, Y. et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am. J. Transplant. 6, 2121–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Porcheray, F. et al. B-cell immunity in the context of T-cell tolerance after combined kidney and bone marrow transplantation in humans. Am. J. Transplant. 9, 2126–2135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Axelrod, D. et al. Kidney and pancreas transplantation in the United States, 1999–2008: the changing face of living donation. Am. J. Transplant. 10, 987–1002 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Vincenti, F. et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am. J. Transpl. 10, 535–546 (2010).

    Article  CAS  Google Scholar 

  137. Ashton-Chess, J., Brouard, S. & Soulillou, J.-P. Is clinical tolerance realistic in the next decade? Transpl. Int. 19, 539–548 (2006).

    Article  PubMed  Google Scholar 

  138. Valujskikh, A., Pantenburg, B. & Heeger, P. S. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am. J. Transplant. 2, 501–509 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Adams, A. B., Pearson, T. C. & Larsen, C. P. Heterologous immunity: an overlooked barrier to tolerance. Immunol. Rev. 196, 147–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Amir, A. L. et al. Allo-HLA reactivity of virus-specific memory T cells is common. Blood 115, 3146–3157 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Adams, A. B. et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest. 111, 1887–1895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stapler, D. et al. Expansion of effector memory TCR Vβ4+CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. J. Immunol. 180, 3190–3200 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Williams, M. A. et al. Characterization of virus-mediated inhibition of mixed chimerism and allospecific tolerance. J. Immunol. 167, 4987–4995 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Williams, M. A. et al. Cutting edge: persistent viral infection prevents tolerance induction and escapes immune control following CD28/CD40 blockade-based regimen. J. Immunol. 169, 5387–5391 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Koehn, B. H. et al. Fully MHC-disparate mixed hemopoietic chimeras show specific defects in the control of chronic viral infections. J. Immunol. 179, 2616–2626 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Davies, J. D., Cobbold, S. P. & Waldmann, H. Strain variation in susceptibility to monoclonal antibody-induced transplantation tolerance. Transplantation 63, 1570–1573 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Cao, T. M., Lo, B., Ranheim, E. A., Grumet, F. C. & Shizuru, J. A. Variable hematopoietic graft rejection and graft-versus-host disease in MHC-matched strains of mice. Proc. Natl Acad. Sci. USA 100, 11571–11576 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pree, I. & Wekerle, T. New approaches to prevent transplant rejection: co-stimulation blockers anti-CD40L and CTLA4Ig. Drug Discov. Today Ther. Strateg. 3, 41–47 (2006).

    Article  Google Scholar 

  150. Gilson, C. R. et al. Anti-CD40 monoclonal antibody synergizes with CTLA4-Ig in promoting long-term graft survival in murine models of transplantation. J. Immunol. 183, 1625–1635 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Adams, A. B. et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J. Immunol. 174, 542–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Vincenti, F. et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am. J. Transplant. 7, 1770–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Weaver, T. A. et al. Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nat. Med. 15, 746–749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haustein, S. et al. Interleukin-15 receptor blockade in non-human primate kidney transplantation. Transplantation 89, 937–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Ashton-Chess, J., Giral, M., Soulillou, J. & Brouard, S. Using biomarkers of tolerance and rejection to identify high- and low-risk patients following kidney transplantation. Transplantation 87, 95–99 (2009).

    Article  Google Scholar 

  156. Horner, B. et al. Predictors of organ allograft tolerance following hematopoietic cell transplantation. Am. J. Transplant. 6, 2894–2902 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the work described in this Review was supported by research grants from the Austrian Science Fund (FWF, SFB-F2310) and the European Society for Organ Transplantation (ESOT).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, discussing the content, writing the article, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Thomas Wekerle.

Ethics declarations

Competing interests

T. Wekerle declares associations with the following companies: Bristol-Myers Squibb (grant/research support), Wyeth (speakers' bureau). N. Pilat declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilat, N., Wekerle, T. Transplantation tolerance through mixed chimerism. Nat Rev Nephrol 6, 594–605 (2010). https://doi.org/10.1038/nrneph.2010.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.110

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research