Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms

Abstract

One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to design efficient cellular synthetic production systems. Re-engineered versions of secondary metabolite biosynthetic pathways identified from any genomic sequence can then be inserted into these systems in a plug-and-play fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pipeline for plug-and-play expression of unknown biosynthetic pathways.
Figure 2: Controlling space and time on different scales in an optimized plug-and-play system.

Similar content being viewed by others

References

  1. Lautru, S., Deeth, R. J., Bailey, L. M. & Challis, G. L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nature Chem. Biol. 1, 265–269 (2005).

    Article  CAS  Google Scholar 

  2. Lentzen, G. & Schwarz, T. Extremolytes: natural compounds from extremophiles for versatile applications. Appl. Microbiol. Biotechnol. 72, 623–634 (2006).

    Article  CAS  Google Scholar 

  3. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  Google Scholar 

  4. Brady, S. F., Simmons, L., Kim, J. H. & Schmidt, E. W. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat. Prod. Rep. 26, 1488–1503 (2009).

    Article  CAS  Google Scholar 

  5. Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).

    Article  CAS  Google Scholar 

  6. Gottelt, M., Kol, S., Gomez-Escribano, J. P., Bibb, M. & Takano, E. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156, 2343–2353 (2010).

    Article  CAS  Google Scholar 

  7. Starcevic, A. et al. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 36, 6882–6892 (2008).

    Article  CAS  Google Scholar 

  8. Weber, T. et al. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J. Biotechnol. 140, 13–17 (2009).

    Article  CAS  Google Scholar 

  9. Li, M. H., Ung, P. M., Zajkowski, J., Garneau-Tsodikova, S. & Sherman, D. H. Automated genome mining for natural products. BMC Bioinformatics 10, 185 (2009).

    Article  Google Scholar 

  10. Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. Chembiochem. 10, 625–633 (2009).

    Article  CAS  Google Scholar 

  11. Bumpus, S. B., Evans, B. S., Thomas, P. M., Ntai, I. & Kelleher, N. L. A proteomics approach to discovering natural products and their biosynthetic pathways. Nature Biotech. 27, 951–956 (2009).

    Article  CAS  Google Scholar 

  12. Purnick, P. E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  13. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010).

    Article  CAS  Google Scholar 

  14. Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nature Biotech. 27, 1139–1150 (2009).

    Article  CAS  Google Scholar 

  15. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotech. 18, 533–537 (2000).

    Article  CAS  Google Scholar 

  16. Holtz, W. J. & Keasling, J. D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19–23 (2010).

    Article  CAS  Google Scholar 

  17. Galvao, T. C. & de Lorenzo, V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34–42 (2006).

    Article  CAS  Google Scholar 

  18. Tang, S. Y., Fazelinia, H. & Cirino, P. C. AraC regulatory protein mutants with altered effector specificity. J. Am. Chem. Soc. 130, 5267–5271 (2008).

    Article  CAS  Google Scholar 

  19. Dixon, N. et al. Reengineering orthogonally selective riboswitches. Proc. Natl Acad. Sci. USA 107, 2830–2835 (2010).

    Article  CAS  Google Scholar 

  20. Wagner, A. Energy costs constrain the evolution of gene expression. J. Exp. Zool. B Mol. Dev. Evol. 308, 322–324 (2007).

    Article  Google Scholar 

  21. Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nature Genet. 36, 486–491 (2004).

    Article  CAS  Google Scholar 

  22. Sattely, E. S., Fischbach, M. A. & Walsh, C. T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25, 757–793 (2008).

    Article  CAS  Google Scholar 

  23. Chechik, G. et al. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nature Biotech. 26, 1251–1259 (2008).

    Article  CAS  Google Scholar 

  24. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotech. 27, 465–471 (2009).

    Article  CAS  Google Scholar 

  25. Malmberg, L. H. & Hu, W. S. Identification of rate-limiting steps in cephalosporin C biosynthesis in Cephalosporium acremonium: a theoretical analysis. Appl. Microbiol. Biotechnol. 38, 122–128 (1992).

    Article  CAS  Google Scholar 

  26. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  Google Scholar 

  27. Dano, S., Madsen, M. F. & Sorensen, P. G. Quantitative characterization of cell synchronization in yeast. Proc. Natl Acad. Sci. USA 104, 12732–12736 (2007).

    Article  Google Scholar 

  28. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    Article  CAS  Google Scholar 

  29. Nieselt, K. et al. The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11, 10 (2010).

    Article  Google Scholar 

  30. Alam, M. T. et al. Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11, 202 (2010).

    Article  Google Scholar 

  31. Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    Article  CAS  Google Scholar 

  32. Llopis, P. M. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77–81 (2010).

    Article  CAS  Google Scholar 

  33. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotech. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

  34. Moon, T. S., Dueber, J. E., Shiue, E. & Prather, K. L. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12, 298–305 (2010).

    Article  CAS  Google Scholar 

  35. Menzella, H. G. et al. Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster. J. Ind. Microbiol. Biotechnol. 33, 22–28 (2006).

    Article  CAS  Google Scholar 

  36. Menzella, H. G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nature Biotech. 23, 1171–1176 (2005).

    Article  CAS  Google Scholar 

  37. Menzella, H. G., Carney, J. R. & Santi, D. V. Rational design and assembly of synthetic trimodular polyketide synthases. Chem. Biol. 14, 143–151 (2007).

    Article  CAS  Google Scholar 

  38. Straight, P. D., Fischbach, M. A., Walsh, C. T., Rudner, D. Z. & Kolter, R. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 305–310 (2007).

    Article  CAS  Google Scholar 

  39. Evers, M. E., Trip, H., van den Berg, M. A., Bovenberg, R. A. & Driessen, A. J. Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv. Biochem. Eng. Biotechnol. 88, 111–135 (2004).

    CAS  PubMed  Google Scholar 

  40. Chanda, A. et al. A key role for vesicles in fungal secondary metabolism. Proc. Natl Acad. Sci. USA 106, 19533–19538 (2009).

    Article  CAS  Google Scholar 

  41. Sirikantaramas, S., Yamazaki, M. & Saito, K. Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochem. Rev. 7, 467–477 (2007).

    Article  Google Scholar 

  42. Bayer, T. S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009).

    Article  CAS  Google Scholar 

  43. Roodbeen, R. & van Hest, J. C. Synthetic cells and organelles: compartmentalization strategies. Bioessays 31, 1299–1308 (2009).

    Article  CAS  Google Scholar 

  44. Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).

    Article  CAS  Google Scholar 

  45. Medema, M. H. et al. The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol. Evol. 2, 212–224 (2010).

    Article  Google Scholar 

  46. Fan, C. et al. Short N-terminal sequences package proteins into bacterial microcompartments. Proc. Natl Acad. Sci. USA 107, 7509–7514 (2010).

    Article  CAS  Google Scholar 

  47. Parsons, J. B. et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol. Cell 38, 305–315 (2010).

    Article  CAS  Google Scholar 

  48. Cai, F. et al. The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS ONE 4, e7521 (2009).

    Article  Google Scholar 

  49. Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    Article  CAS  Google Scholar 

  50. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).

    Article  CAS  Google Scholar 

  51. Stubblefield, B. A. et al. Constructing multispecies biofilms with defined compositions by sequential deposition of bacteria. Appl. Microbiol. Biotechnol. 86, 1941–1946 (2010).

    Article  CAS  Google Scholar 

  52. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

    Article  CAS  Google Scholar 

  53. You, L., Cox, R. S. 3rd, Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004).

    Article  CAS  Google Scholar 

  54. Balagadde, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    Article  Google Scholar 

  55. Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  Google Scholar 

  56. Kealey, J. T., Liu, L., Santi, D. V., Betlach, M. C. & Barr, P. J. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc. Natl Acad. Sci. USA 95, 505–509 (1998).

    Article  CAS  Google Scholar 

  57. Watanabe, K. et al. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nature Chem. Biol. 2, 423–428 (2006).

    Article  CAS  Google Scholar 

  58. Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    Article  CAS  Google Scholar 

  59. Boghigian, B. A. & Pfeifer, B. A. Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli. Biotechnol. Lett. 30, 1323–1330 (2008).

    Article  CAS  Google Scholar 

  60. Zha, W., Rubin-Pitel, S. B., Shao, Z. & Zhao, H. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11, 192–198 (2009).

    Article  CAS  Google Scholar 

  61. Keasling, J. D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    Article  CAS  Google Scholar 

  62. Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    Article  CAS  Google Scholar 

  63. Rocha, I. et al. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4, 45 (2010).

    Article  Google Scholar 

  64. Adrio, J. L. & Demain, A. L. Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 30, 187–214 (2006).

    Article  CAS  Google Scholar 

  65. Posfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    Article  CAS  Google Scholar 

  66. Komatsu, M., Uchiyama, T., Omura, S., Cane, D. E. & Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl Acad. Sci. USA 107, 2646–2651 (2010).

    Article  CAS  Google Scholar 

  67. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  68. Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

    Article  CAS  Google Scholar 

  69. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  Google Scholar 

  70. Carlson, R. The changing economics of DNA synthesis. Nature Biotech. 27, 1091–1094 (2009).

    Article  CAS  Google Scholar 

  71. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  72. Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493 (2010).

    Article  CAS  Google Scholar 

  73. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: How natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA 105, 4601–4608 (2008).

    Article  CAS  Google Scholar 

  74. Olano, C., Mendez, C. & Salas, J. A. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat. Prod. Rep. 27, 571–616 (2010).

    Article  CAS  Google Scholar 

  75. Jenke-Kodama, H., Borner, T. & Dittmann, E. Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput. Biol. 2, e132 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Hopwood and C. Voigt for constructive comments and suggestions. This work was supported by the Dutch Technology Foundation (STW), which is the applied-science division of The Netherlands Organisation for Scientific Research (NWO) and the Technology Programme of the Ministry of Economic Affairs (grant STW 10463). R.B. is supported by an NWO–Vidi fellowship, and E.T. is supported by a Rosalind Franklin Fellowship, University of Groningen, the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriko Takano.

Ethics declarations

Competing interests

Roel Bovenberg works for DSM, where he is involved in the anti-infectives business.

Marnix H. Medema, Rainer Breitling and Eriko Takano declare no competing financial interest.

Related links

Related links

FURTHER INFORMATION

Eriko Takano's homepage

Rainer Breitling's homepage

Glossary

Metabolic flux

The flow of metabolites through a metabolic system.

Modularity

The extent to which a system can be subdivided into 'modules' that can be recombined in new ways.

Non-ribosomal-peptide synthetase

A large multidomain megasynthase enzyme that functions as an assembly line to produce peptides, usually containing non-proteinogenic amino acids.

Orthogonal

Functioning entirely uncoupled from the native system, without crosstalk.

Quorum sensing

Intercellular communication between members of a microbial colony or community, carried out through small signalling molecules.

Secondary metabolite

A metabolite that is characteristic of particular strains or species and that has a specific function outside the primary metabolism that governs core cellular functions.

Tailoring enzyme

An enzyme that modifies the core scaffold of a compound by, for example, oxidoreduction, methylation or glycosylation.

Type I modular PKS

A large multidomain megasynthase enzyme that functions as an assembly line to produce a polyketide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medema, M., Breitling, R., Bovenberg, R. et al. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9, 131–137 (2011). https://doi.org/10.1038/nrmicro2478

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2478

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research