Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyclic di-AMP: another second messenger enters the fray

Key Points

  • When faced with stresses in a rapidly changing environment, bacteria must be able to sense these changes and coordinate responses rapidly. To do this, they use a number of nucleotide signalling molecules that act as second messengers to transduce signals around the cell.

  • Cyclic di-AMP (c-di-AMP) is a recently discovered signalling nucleotide that is present in many Gram-positive bacteria, a limited number of Gram-negative species and also probably in some archaea.

  • This signalling molecule is synthesized by cyclase enzymes, which condense two molecules of ATP to c-di-AMP using the enzymatic activity that is contained within the DisA_N domain, a domain that is distinct from other dinucleotide cyclase domains.

  • c-di-AMP is degraded to the linear molecule pApA by the action of phosphodiesterases containing a DHH–DHHA1 domain architecture.

  • Following synthesis, c-di-AMP binds to a specific set of receptor or target proteins and allosterically alters their function (or the function of downstream effector proteins). To date, five c-di-AMP receptors have been identified, namely c-di-AMP receptor regulator (DarR), which is involved in the regulation of fatty acid synthesis in Mycobacterium smegmatis; KtrA, cation proton antiporter A (CpaA) and KdpD, which are all potentially linked to potassium or ion transport in Staphylococcus aureus; and PstA, a protein of unknown function.

  • Although the exact pathways have yet to be fully worked out, a number of phenotypes associated with altered c-di-AMP levels in the cell have now been characterized. For instance, c-di-AMP is linked to the sensing of DNA integrity in Bacillus subtilis and to cell wall homeostasis in multiple species, and can also induce a eukaryotic immune response when secreted by the bacterium Listeria monocytogenes.

Abstract

Nucleotide signalling molecules contribute to the regulation of cellular pathways in all forms of life. In recent years, the discovery of new signalling molecules in bacteria and archaea, as well as the elucidation of the pathways they regulate, has brought insights into signalling mechanisms not only in bacterial and archaeal cells but also in eukaryotic host cells. Here, we provide an overview of the synthesis and regulation of cyclic di-AMP (c-di-AMP), one of the latest cyclic nucleotide second messengers to be discovered in bacteria. We also discuss the currently known receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, the domain structure of the enzymes involved in its production and degradation, and the recognition of c-di-AMP by the eukaryotic host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyclic di-AMP production.
Figure 2: Domain architecture of known and predicted bacterial cyclic di-AMP synthases and hydrolases.
Figure 3: Cyclic di-AMP receptor proteins.
Figure 4: The cyclic di-AMP signalling network.
Figure 5: Induction of a type I interferon response by bacteria.

Similar content being viewed by others

References

  1. McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nature Rev. Microbiol. 10, 27–38 (2012).

    CAS  Google Scholar 

  2. Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase. Nature Rev. Microbiol. 10, 203–212 (2012).

    CAS  Google Scholar 

  3. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nature Rev. Microbiol. 7, 263–273 (2009).

    CAS  Google Scholar 

  4. Witte, G., Hartung, S., Buttner, K. & Hopfner, K. P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell. 30, 167–178 (2008). This in vitro study is the first to identify a c-di-AMP-synthesizing enzyme.

    CAS  PubMed  Google Scholar 

  5. Bejerano-Sagie, M. et al. A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125, 679–690 (2006).

    CAS  PubMed  Google Scholar 

  6. Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010). The original paper demonstrating that c-di-AMP is synthesized by bacterial cells and that it can activate a human innate immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamegaya, T., Kuroda, K. & Hayakawa, Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP. Nagoya J. Med. Sci. 73, 49–57 (2011).

    CAS  PubMed  Google Scholar 

  8. Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12, 594–601 (2011). A study which establishes that c-di-AMP is produced by B. subtilis and that YybT functions in vivo as a PDE for c-di-AMP.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barker, J. R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4, e00018-13 (2013). The first evidence that c-di-AMP is also produced by a Gram-negative bacterium.

    PubMed  PubMed Central  Google Scholar 

  10. Corrigan, R. M. & Abbott, J. C., Burhenne, H., Kaever, V. & Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai, Y. et al. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS ONE 7, e35206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Römling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1, pe39 (2008).

    PubMed  Google Scholar 

  13. Zhang, L., Li, W. & He, Z. G. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J. Biol. Chem. 288, 3085–3096 (2013). A paper identifying the first c-di-AMP receptor.

    CAS  PubMed  Google Scholar 

  14. Corrigan, R. M., Campeotto, I., Jeganathan, T., Lee, V. T. & Gründling, A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc. Natl Acad. Sci USA 110, 9084–9089 (2013). Work describing the identification of several conserved c-di-AMP receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mehne, F. M. et al. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high-level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem. 288, 2004–2017 (2013).

    CAS  PubMed  Google Scholar 

  16. Luo, Y. & Helmann, J. D. Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol. Microbiol. 83, 623–639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pozzi, C. et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 8, e1002626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffiths, J. M. & O'Neill, A. J. Loss of function of the gdpP protein leads to joint β-lactam/glycopeptide tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 579–581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Banerjee, R., Gretes, M., Harlem, C., Basuino, L. & Chambers, H. F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 54, 4900–4902 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149, 358–370 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baker, D. A. & Kelly, J. M. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol. 52, 1229–1242 (2004).

    CAS  PubMed  Google Scholar 

  22. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).

    CAS  PubMed  Google Scholar 

  23. Galperin, M. Y. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6, 552–667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Galperin, M. Y., Higdon, R. & Kolker, E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol. Biosyst 6, 721–728 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Römling, U., Gomelsky, M. & Galperin, M. Y. c-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57, 629–639 (2005).

    PubMed  Google Scholar 

  26. Barb, A. W. et al. Structures of domains I and IV from YbbR are representative of a widely distributed protein family. Protein Sci. 20, 396–405 (2011).

    CAS  PubMed  Google Scholar 

  27. Fedorov, R. et al. Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr. D Biol. Crystallogr. 57, 968–976 (2001).

    CAS  PubMed  Google Scholar 

  28. Harms, J. M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30, 26–38 (2008).

    CAS  PubMed  Google Scholar 

  29. Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K. & Hecker, M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24, 3435–3445 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Eiamphungporn, W. & Helmann, J. D. The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol. Microbiol. 67, 830–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jervis, A. J., Thackray, P. D., Houston, C. W., Horsburgh, M. J. & Moir, A. SigM-responsive genes of Bacillus subtilis and their promoters. J. Bacteriol. 189, 4534–4538 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

    CAS  PubMed  Google Scholar 

  33. Rao, F. et al. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem. 285, 473–482 (2010). On the basis of in vitro experiments carried out in this study, the authors propose that the B. subtilis protein YybT functions as a c-di-AMP-specific PDE.

    CAS  PubMed  Google Scholar 

  34. Luo, Y. & Helmann, J. D. A σD-dependent antisense transcript modulates expression of the cyclic-di-AMP hydrolase GdpP in Bacillus subtilis. Microbiology 158, 2732–2741 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao, F., Ji, Q., Soehano, I. & Liang, Z. X. An unusual heme-binding, PAS domain from YybT family proteins. J. Bacteriol. 193, 1543–1551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schirmer, T. & Jenal, U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Rev. Microbiol. 7, 724–735 (2009).

    CAS  Google Scholar 

  37. Christen, M., Christen, B., Folcher, M., Schauerte, A. & Jenal, U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280, 30829–30837 (2005).

    CAS  PubMed  Google Scholar 

  38. Massie, J. P. et al. Quantification of high-specificity cyclic diguanylate signaling. Proc. Natl Acad. Sci. USA 109, 12746–12751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hickman, J. W. & Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69, 376–389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Witte, C. E. et al. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4, e00282-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Song, J. H. et al. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells. 19, 365–374 (2005).

    CAS  PubMed  Google Scholar 

  42. Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl Acad. Sci. USA 103, 425–430 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhuri, R. R. et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10, 291 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. French, C. T. et al. Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol. Microbiol. 69, 67–76 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 75, 293–320 (2003).

    CAS  PubMed  Google Scholar 

  46. Hanelt, I. et al. KtrB, a member of the superfamily of K+ transporters. Eur. J. Cell Biol. 90, 696–704 (2011).

    PubMed  Google Scholar 

  47. Smith, W. M. et al. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Appl. Environ. Microbiol. 78, 7753–7759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mari, S. A. et al. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl Acad. Sci. USA 108, 20802–20807 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Freeman, Z. N., Dorus, S. & Waterfield, N. R. The KdpD/KdpE two-component system: integrating K+ homeostasis and virulence. PLoS Pathog. 9, e1003201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnesano, F. et al. The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J. Biol. Chem. 278, 5999–6006 (2003).

    Google Scholar 

  51. Lohkamp, B., McDermott, G., Campbell, S. A., Coggins, J. R. & Lapthorn, A. J. The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J. Mol. Biol. 336, 131–144 (2004).

    CAS  PubMed  Google Scholar 

  52. Ninfa, A. J. & Atkinson, M. R. PII signal transduction proteins. Trends Microbiol. 8, 172–179 (2000).

    CAS  PubMed  Google Scholar 

  53. Rallu, F., Gruss, A., Ehrlich, S. D. & Maguin, E. Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol. Microbiol. 35, 517–528 (2000).

    CAS  PubMed  Google Scholar 

  54. Damper, P. D. & Epstein, W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother. 20, 803–808 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mates, S. M., Patel, L., Kaback, H. R. & Miller, M. H. Membrane potential in anaerobically growing Staphylococcus aureus and its relationship to gentamicin uptake. Antimicrob. Agents Chemother. 23, 526–530 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwartz, K. T. et al. Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect. Immun. 80, 1537–1545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Crimmins, G. T. et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc. Natl Acad. Sci. USA 105, 10191–10196 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamamoto, T. et al. Listeria monocytogenes strain-specific impairment of the TetR regulator underlies the drastic increase in cyclic di-AMP secretion and beta interferon-inducing ability. Infect. Immun. 80, 2323–2332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunol. 13, 1155–1161 (2012).

    CAS  Google Scholar 

  60. Sauer, J. D. et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187, 2595–2601 (2011).

    CAS  PubMed  Google Scholar 

  63. Yin, Q. et al. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46, 735–745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ouyang, S. et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36, 1073–1086 (2012).

    CAS  PubMed  Google Scholar 

  65. Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nature Struct. Mol. Biol. 19, 725–727 (2012).

    CAS  Google Scholar 

  66. Shu, C., Yi, G., Watts, T., Kao, C. C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nature Struct. Mol. Biol. 19, 722–724 (2012).

    CAS  Google Scholar 

  67. Huang, Y. H., Liu, X. Y., Du, X. X., Jiang, Z. F. & Su, X. D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nature Struct. Mol. Biol. 19, 728–730 (2012).

    CAS  Google Scholar 

  68. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013). The first demonstration that the cyclic hybrid dinucleotide cGAMP(2′–5′) is produced by eukaryotic cells.

    CAS  PubMed  Google Scholar 

  70. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). A report detailing the discovery of the enzyme responsible for cGAMP(2′–5′) production in eukaryotic cells.

    CAS  PubMed  Google Scholar 

  71. Diner, E. J. et al. The Innate Immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kranzusch, P. J., Lee, A. S., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature http://dx.doi.org/10.1038/nature12305 (2013).

  74. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature http://dx.doi.org/10.1038/nature12306 (2013).

  75. Karaolis, D. K. et al. 3′,5′-cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun. 329, 40–45 (2005).

    CAS  PubMed  Google Scholar 

  76. Ebensen, T. et al. Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29, 5210–5220 (2011).

    CAS  PubMed  Google Scholar 

  77. Ebensen, T. et al. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine 25, 1464–1469 (2007).

    CAS  PubMed  Google Scholar 

  78. Chen, W., Kuolee, R. & Yan, H. The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine 28, 3080–3085 (2010).

    CAS  PubMed  Google Scholar 

  79. Roelofs, K. G., Wang, J., Sintim, H. O. & Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc. Natl Acad. Sci. USA 108, 15528–15533 (2011). A paper describing a novel and rapid method for the detection of small-molecule protein interactions; this procedure is ideally suited for high-throughput screening assays.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nesper, J., Reinders, A., Glatter, T., Schmidt, A. & Jenal, U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J. Proteom. 75, 4874–4878 (2012).

    CAS  Google Scholar 

  81. Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281 (1987).

    CAS  PubMed  Google Scholar 

  82. Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    CAS  PubMed  Google Scholar 

  83. Barends, T. R. et al. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459, 1015–1018 (2009).

    CAS  PubMed  Google Scholar 

  84. Tuckerman, J. R. et al. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764–9774 (2009).

    CAS  PubMed  Google Scholar 

  85. Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–906 (2005).

    CAS  PubMed  Google Scholar 

  86. Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).

    CAS  PubMed  Google Scholar 

  87. Qi, Y., Rao, F., Luo, Z. & Liang, Z. X. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. Biochemistry 48, 10275–10285 (2009).

    CAS  PubMed  Google Scholar 

  88. Tischler, A. D. & Camilli, A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53, 857–869 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kulasekara, H. D. et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol. 55, 368–380 (2005).

    CAS  PubMed  Google Scholar 

  90. Sondermann, H., Shikuma, N. J. & Yildiz, F. H. You've come a long way: c-di-GMP signaling. Curr. Opin. Microbiol. 15, 140–146 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ryjenkov, D. A., Simm, R., Romling, U. & Gomelsky, M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281, 30310–30314 (2006).

    CAS  PubMed  Google Scholar 

  92. Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y. & Lory, S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65, 876–895 (2007).

    CAS  PubMed  Google Scholar 

  93. Duerig, A. et al. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 23, 93–104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Newell, P. D., Monds, R. D. & O'Toole, G. A. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl Acad. Sci. USA 106, 3461–3466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jurica, M. S. et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6, 195–210 (1998).

    CAS  PubMed  Google Scholar 

  97. Sing, A. et al. Bacterial induction of beta interferon in mice is a function of the lipopolysaccharide component. Infect. Immun. 68, 1600–1607 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McCaffrey, R. L. et al. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl Acad. Sci. USA 101, 11386–11391 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the A.G. laboratory is currently supported by the European Research Council (grant 260371) and the Wellcome Trust (grant 100289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Gründling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Phylogenetic distribution of DAC and PDE enzymes (PDF 235 kb)

Glossary

Nucleotidyl transferase superfamily

A family of enzymes that transfer nucleotides onto phosphosugars.

Forespore

The smaller of the two compartments that are formed by asymmetrical division of the sporulating cell. The forespore matures into an endospore.

Phosphoenolpyruvate-dependent sugar phosphotransferase system EIIA

A subunit of the protein EII, an enzyme responsible for the import and phosphorylation of sugars that are imported through this major carbohydrate transport system in bacteria and archaea.

Tetratricopeptide repeat

A structural motif found in tandem arrays of 3–16 repeats. These motifs form scaffolds to promote protein–protein interactions.

PAS sensory domain

A domain that is named for its conservation in the proteins Per, ARNT and Sim and their homologues. The PAS domain binds a diverse range of small-molecule ligands (for example, haem and FAD) and is often involved in redox and light responses.

DHH domain

A domain that is found in a family of phosphatases and is characterized by the presence of a conserved DHH amino acid motif.

Surface plasmon resonance

A way of measuring the interaction of macromolecules at a surface through changes in the refractive index. Valence electrons of molecules at a metal–liquid interface oscillate in response to incident light. When one ligand is immobilized on a metal surface (for example, using a hexahistidine tag) and a second ligand is passed across the surface, the association and dissociation of the two ligands result in a change of refractive index, which can be measured.

Major facilitator family transporter

A family of transporters that are responsible for transporting small solutes across the membrane in response to chemiosmotic ion gradients.

Regulator of conductance of potassium family

A family of proteins that often function as ligand-gated potassium channels.

Lipoteichoic acid

A cell wall polymer that, in many cases, consists of a polyglycerolphosphate chain which is inserted into the bacterial membrane through a glycolipid anchor.

Type I interferon response

An immune response that is traditionally associated with viral infection, but is now known to also be important in the response to bacteria. It involves the secretion of cytokines, including interferon-α (IFNα) and IFNβ, by many mammalian cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrigan, R., Gründling, A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11, 513–524 (2013). https://doi.org/10.1038/nrmicro3069

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3069

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology