Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genome architecture and global gene regulation in bacteria: making progress towards a unified model?

Subjects

This article has been updated

Abstract

Data obtained with advanced imaging techniques, chromosome conformation capture methods, bioinformatics and molecular genetics, together with insights from polymer physics and mechanobiology, are helping to refine our understanding of the spatiotemporal organization of the bacterial nucleoid and its gene expression programmes. Here, I discuss the proposal that, in addition to DNA topology and nucleoid-associated proteins, gene regulation is an important organizing principle of nucleoid architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the Escherichia coli nucleoid.
Figure 2: Nucleoid folding and gene regulation.
Figure 3: Growth phase and elements that affect nucleoid structure.

Similar content being viewed by others

Change history

  • 05 April 2013

    Reference 68 was omitted from the article; this has now been corrected.

References

  1. Kellenberger, E., Ryter, A. & Séchaud, J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol. 4, 671–678 (1958).

    Article  CAS  Google Scholar 

  2. Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

    Article  CAS  Google Scholar 

  3. Montero Llopis, P. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77–82 (2010).

    Article  Google Scholar 

  4. Wang, W., Li, G.-W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).

    Article  CAS  Google Scholar 

  5. Sobetzko, P., Travers, A. & Muskhelishvili, G. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc. Natl Acad. Sci. USA 109, E42–E50 (2012).

    Article  CAS  Google Scholar 

  6. Pelletier, J. et al. Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc. Natl Acad. Sci. USA 109, E2649–E2656 (2012).

    Article  CAS  Google Scholar 

  7. Wiggins, P. A., Cheveralls, K. C., Martin, J. S., Lintner, R. & Kondev, J. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc. Natl Acad. Sci. USA 107, 4991–4995 (2010).

    Article  CAS  Google Scholar 

  8. Scolari, V. F., Bassetti, B., Sclavi, B. & Lagomarsino, M. C. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. Mol. Biosyst. 7, 878–888 (2011).

    Article  CAS  Google Scholar 

  9. Benza, V. G. et al. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. Rep. Prog. Phys. 75, 076602 (2012).

    Article  Google Scholar 

  10. Hadizadeh Yazdi, N., Guet, C. C., Johnson, R. C. & Marko, J. Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol. Microbiol. 86, 1318–1333 (2012).

    Article  CAS  Google Scholar 

  11. de Vries, R. DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins. Biochimie 92, 1715–1721 (2010).

    Article  CAS  Google Scholar 

  12. Trun, N. J. & Marko, J. Architecture of a bacterial chromosome. ASM News 64, 276–283 (1998).

    Google Scholar 

  13. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nature Rev. Microbiol. 8, 185–195 (2010).

    Article  CAS  Google Scholar 

  14. Balke, V. L. & Gralla, J. D. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 169, 4499–4506 (1987).

    Article  CAS  Google Scholar 

  15. Dorman, C. J. & Corcoran, C. P. Bacterial DNA topology and infectious disease. Nucleic Acids Res. 37, 672–678 (2009).

    Article  CAS  Google Scholar 

  16. Travers, A. & Muskhelishvili, G. DNA supercoiling — a global transcriptional regulator for enterobacterial growth? Nature Rev. Microbiol. 3, 157–169 (2005).

    Article  CAS  Google Scholar 

  17. Dame, R. T., Espéli, O., Grainger, D. C. & Wiggins, P. A. Multidisciplinary perspectives on bacterial genome organization and dynamics. Mol. Microbiol. 86, 1023–1030 (2012).

    Article  CAS  Google Scholar 

  18. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article  CAS  Google Scholar 

  19. Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).

    Article  CAS  Google Scholar 

  20. Esnault, E., Valens, M., Espéli, O. & Boccard, F. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226 (2007).

    Article  Google Scholar 

  21. Dame, R. T., Kalmykowa, O. J. & Grainger, D. C. Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram-negative bacteria. PLoS Genet. 7, e1002123 (2011).

    Article  CAS  Google Scholar 

  22. Lesterlin, C., Barre, F. X. & Cornet, F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol. Microbiol. 54, 1151–1160 (2004).

    Article  CAS  Google Scholar 

  23. Badrinarayanan, A., Lesterlin, C., Reyes-Lamothe, R. & Sherratt, D. The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J. Bacteriol. 194, 4669–4676 (2012).

    Article  CAS  Google Scholar 

  24. Espéli, O. et al. A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31, 3198–3211 (2012).

    Article  Google Scholar 

  25. Thiel, A., Valens, M., Vallet-Gely, I., Espéli, O. & Boccard, F. Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain. PLoS Genet. 8, e1002672 (2012).

    Article  CAS  Google Scholar 

  26. Mercier, R. et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135, 475–485 (2008).

    Article  CAS  Google Scholar 

  27. Dupaigne, P. et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 48, 560–571 (2012).

    Article  CAS  Google Scholar 

  28. Bach, T., Krekling, M. A. & Skarstad, K. Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. EMBO J. 22, 315–323 (2003).

    Article  CAS  Google Scholar 

  29. Lu, M., Campbell, J. M., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

    Article  CAS  Google Scholar 

  30. von Friesleben, U., Rasmussen, K. V. & Schaechter, M. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 14, 763–772 (1994).

    Article  Google Scholar 

  31. Sánchez-Romero, M. A. et al. Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. mBio 1, e00012–10 (2010).

    Article  Google Scholar 

  32. Hardy, C. D. & Cozzarelli, N. R. A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol. 57, 1636–1652 (2005).

    Article  CAS  Google Scholar 

  33. Tonthat, N. K. et al. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J. 30, 154–164 (2011).

    Article  CAS  Google Scholar 

  34. Pettijohn, D. E. Structure and properties of the bacterial nucleoid. Cell 30, 667–669 (1982).

    Article  CAS  Google Scholar 

  35. Sinden, R. R. & Pettijohn, D. E. Chromosomes in living Escherichia coli are segregated into domains of supercoiling. Proc. Natl Acad. Sci. USA 78, 224–228 (1981).

    Article  CAS  Google Scholar 

  36. Worcel, A. & Burgi, E. On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol. 71, 127–147 (1972).

    Article  CAS  Google Scholar 

  37. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).

    Article  CAS  Google Scholar 

  38. Deng, S., Stein, R. A. & Higgins, N. P. Organization of supercoil domains and their reorganization by transcription. Mol. Microbiol. 57, 1511–1521 (2005).

    Article  CAS  Google Scholar 

  39. Noom, M. C., Navarre, W. W., Oshima, T., Wuite, G. J. & Dame, R. T. H-NS promotes looped domain formation in the bacterial chromosome. Curr. Biol. 17, R913–R914 (2007).

    Article  CAS  Google Scholar 

  40. Dillon, S. C. et al. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol. Microbiol. 76, 1250–1265 (2010).

    Article  CAS  Google Scholar 

  41. Sinden, R. R. DNA Structure and Function (Academic Press, 1994).

    Google Scholar 

  42. Basu, A., Schoeffler, A. J., Berger, J. M. & Bryant, Z. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA. Nature Struct. Mol. Biol. 19, 538–546 (2012).

    Article  CAS  Google Scholar 

  43. Rovinskiy, N., Agbleke, A. A., Chesnokova, O., Pang, Z. & Higgins, N. P. Rates of DNA gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet. 8, e1002845 (2012).

    Article  CAS  Google Scholar 

  44. van Workum, M. et al. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol. Microbiol. 20, 351–360 (1996).

    Article  CAS  Google Scholar 

  45. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  Google Scholar 

  46. Bordes, P. et al. DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol. Microbiol. 48, 561–571 (2003).

    Article  CAS  Google Scholar 

  47. Cameron, A. D. S. & Dorman, C. J. A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLoS Genet. 8, e1002615 (2012).

    Article  CAS  Google Scholar 

  48. Cabrera, J. E., Cagliero, C., Quan, S., Squires, C. L. & Jin, D. J. Active transcription of RNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J. Bacteriol. 191, 4180–4185 (2009).

    Article  CAS  Google Scholar 

  49. Sánchez-Romero, M. A., Lee, D. J., Sánchez-Morán, E. & Busby, S. J. Location and dynamics of an active promoter in Escherichia coli K-12. Biochem. J. 441, 481–485 (2012).

    Article  Google Scholar 

  50. Brock, T. D. The Emergence of Bacterial Genetics (Cold Spring Harbor Laboratory Press, 1990).

    Google Scholar 

  51. Maas, W. K. & McFall, E. Genetic aspects of metabolic control. Annu. Rev. Microbiol. 18, 95–110 (1964).

    Article  CAS  Google Scholar 

  52. Busby, S. J. in Regulation of Gene Expression: 25 Years On (eds Booth, I. R. & Higgins, C. F.) 51–77 (Cambridge Univ. Press, 1986).

    Google Scholar 

  53. Magasanik, B. & Neidhardt, F. C. in Escherichia coli and Salmonella, Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1318–1325 (American Society for Microbiology Press, 1987).

    Google Scholar 

  54. Grainger, D. C., Hurd, D., Harrison, M., Holdstock, J. & Busby, S. J. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl Acad. Sci. USA 102, 17693–17698 (2005).

    Article  CAS  Google Scholar 

  55. Browning, D. F., Grainger, D. C. & Busby, S. J. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr. Opin. Microbiol. 13, 773–780 (2010).

    Article  CAS  Google Scholar 

  56. Janga, S. C., Salgado, H. & Martinez-Antonio, A. Transcriptional regulation shapes the organization of genes on bacterial chromosomes. Nucleic Acids Res. 37, 3680–3688 (2009).

    Article  CAS  Google Scholar 

  57. Fritsche, M., Li, S., Heermann, D. W. & Wiggins, P. A. A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation. Nucleic Acids Res. 40, 972–980 (2011).

    Article  Google Scholar 

  58. Képès, F. Periodic transcriptional organization of the E. coli genome. J. Mol. Biol. 340, 957–964 (2004).

    Article  Google Scholar 

  59. Junier, I., Hérison, J. & Képès, F. Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. J. Mol. Biol. 419, 369–386 (2012).

    Article  CAS  Google Scholar 

  60. Wright, M. A., Kharchenko, P., Church, G. M. & Segrè, D. Chromosomal periodicity of evolutionarily conserved gene pairs. Proc. Natl Acad. Sci. USA 104, 10559–10564 (2007).

    Article  CAS  Google Scholar 

  61. Hong, S.-H. et al. Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement. Proc. Natl Acad. Sci. USA 110, 1674–1679 (2013).

    Article  CAS  Google Scholar 

  62. Jeong, K. S., Ahn, J. & Khodursky, A. B. Spatial patterns of transcription activity in the chromosome of Escherichia coli. Genome Biol. 5, R86 (2004).

    Article  Google Scholar 

  63. Mathelier, A. & Carbone, A. Chromosomal periodicity and positional networks of genes in Escherichia coli. Mol. Syst. Biol. 6, 366 (2010).

    Article  Google Scholar 

  64. Berlatzky, I. A., Rouvinski, A. & Ben-Yehuda, S. Spatial organization of a replicating bacterial chromosome. Proc. Natl Acad. Sci. USA 105, 14136–14140 (2008).

    Article  CAS  Google Scholar 

  65. Groisman, E. A. & Ochman, H. How Salmonella became a pathogen. Trends Microbiol. 5, 343–349 (1997).

    Article  CAS  Google Scholar 

  66. Meile, J. C. et al. The terminal region of the E. coli chromosome localizes to the periphery of the nucleoid. BMC Microbiol. 11, 1–28 (2011).

    Article  Google Scholar 

  67. Frenkiel-Krispin, D. et al. Nucleoid restructuring in stationary phase bacteria. Mol. Microbiol. 2, 395–405 (2004).

    Article  Google Scholar 

  68. Kim, J. et al. Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res. 32, 1982–1992 (2004).

    Article  CAS  Google Scholar 

  69. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272 (2006).

    Article  CAS  Google Scholar 

  70. Martínez-Antonio, A., Lomnitz, J. G., Sandoval, S., Aldana, M. & Savageau, M. A. Regulatory design governing progression of population growth phases in bacteria. PLoS ONE 7, e30654 (2012).

    Article  Google Scholar 

  71. Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

    Article  CAS  Google Scholar 

  72. Syvanen, M. Evolutionary implications of horizontal gene transfer. Annu. Rev. Microbiol. 46, 341–358 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks R. L. Gourse and R. T. Dame for helpful discussions, and the three anonymous reviewers for insightful comments. The author also thanks N. Ní Bhriain for comments on the manuscript and M. J. Dorman for assistance with computation. This work was supported by a grant from Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Dorman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

Charles J. Dorman's homepage

PowerPoint slides

Glossary

Chromatin immunoprecipitation followed by microarray

(ChIP–chip). A method that allows the binding sites for a specific protein to be identified throughout a genome in vivo. The protein of interest is crosslinked to DNA in living bacteria with formaldehyde, and the genomic DNA is extracted and then sonicated to achieve a desired average DNA fragment length. An antibody specific for the protein of interest (or for an epitope tag that has been attached to the protein by genetic engineering) is used to precipitate the protein–DNA complex. The crosslinks are then reversed, the released DNA is fluorescently tagged, and its genomic location is identified using a DNA microarray.

Chromosome conformational capture

(3C). A technique that identifies physical interactions between parts of the genome (specifically, interactions that would not be predictable from a survey of the DNA sequence alone). Macromolecules are chemically crosslinked in living cells, and then the DNA is extracted, digested with a restriction enzyme and subjected to intramolecular ligation. PCR is used to detect novel junctions in the ligated DNA, which are predicted to arise from the close proximity of the now-joined sequences in the folded nucleoid. A chromatin immunoprecipitation step can be added to study novel interactions that depend on a specific protein, such as a nucleoid-associated protein.

Chromosome conformational capture carbon copy

(5C). A chromosome conformational capture (3C) library is first constructed, and then multiplex primers with universal primer extensions are annealed to the novel junctions in the library and ligated together. The 3C junctions serve as templates to guide the perfect ligation of the primers. These can then be used in microarrays or subjected to high-throughput sequencing to identify the DNA forming the junction.

Dps

(DNA protection during starvation). A nucleoid-associated protein that is expressed in stationary phase cultures (or in cultures experiencing oxidative stress) and is thought to protect the DNA from damage.

Fis

(Factor-for-inversion stimulation). A nucleoid-associated protein that is expressed in early exponential phase cultures, organizes the local DNA topology and modulates transcription.

H-NS

(Histone-like, nucleoid-structuring protein). A nucleoid-associated protein with a preference for binding to AT-rich DNA. H-NS is expressed at all stages of growth, silences the transcription of hundreds of genes and organizes nucleoid structure.

HU

A nucleoid-associated protein with a general DNA-binding and DNA-compacting activity.

IHF

(Integration host factor). A paralogue of HU with site-specific DNA-binding and DNA-bending activity.

Macrodomains

Genetically defined large-scale chromosomal segments that are unlikely to undergo recombination with each other because the resulting rearrangements are detrimental to the survival of the bacterium. The Escherichia coli chromosome has four macrodomains (Ori, Ter, Left and Right) and two so-called non-structured regions (NS-left and NS-right).

Microdomain

A topologically independent 10–12 kb loop that coexists with other microdomains within the macrodomain superstructure of the Escherichia coli genome. There are around 400 microdomain loops in the genome.

Nucleoid-associated proteins

(NAPs). Low-molecular-mass, abundant DNA-binding proteins that are thought to act as architectural components within the nucleoid and to modulate gene expression. Escherichia coli has at least 12 distinct NAPs.

Replichores

The two arms of the circular chromosome along which bidirectional DNA replication occurs. The right (or clockwise) replichore and the left (or anticlockwise) replichore each extend, in opposite directions, from the origin of chromosome replication (oriC in Escherichia coli) within the Ori macrodomain to the terminus of replication within the Ter macrodomain.

Topoisomerase

An enzyme that alters the linking number of the DNA by cutting, strand passage and religation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorman, C. Genome architecture and global gene regulation in bacteria: making progress towards a unified model?. Nat Rev Microbiol 11, 349–355 (2013). https://doi.org/10.1038/nrmicro3007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3007

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research