Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial ecology of expanding oxygen minimum zones

Key Points

  • Oxygen minimum zones (OMZs) are oxygen-starved regions of the ocean that are currently expanding owing to the warming of the water column that is induced by global climate change.

  • Although OMZs are inhospitable to aerobically respiring organisms, these regions support thriving microbial communities, the metabolic activities of which have a profound impact on marine productivity and climate balance.

  • Plurality sequencing combined with process rate measurements and targeted gene surveys in coastal and open-ocean OMZs has identified conserved patterns of microbial community structure and function, and uncovered novel modes of metabolic integration coupling carbon, nitrogen and sulphur cycles. These findings have important implications for our understanding of the ecological and biogeochemical impacts of OMZ expansion.

  • Co-occurrence networks built from taxonomic sequence data can help define putative metabolic interactions among the microorganisms in OMZs and can enable more direct hypothesis testing when combined with data concerning environmental parameters, process rates and functional genes.

  • Determining how these networks form, function and change over time reveals links between microbial community structure and higher-order ecological and biogeochemical processes. This information has the potential to guide human adaptation and response in a time of climate change.

Abstract

Dissolved oxygen concentration is a crucial organizing principle in marine ecosystems. As oxygen levels decline, energy is increasingly diverted away from higher trophic levels into microbial metabolism, leading to loss of fixed nitrogen and to production of greenhouse gases, including nitrous oxide and methane. In this Review, we describe current efforts to explore the fundamental factors that control the ecological and microbial biodiversity in oxygen-starved regions of the ocean, termed oxygen minimum zones. We also discuss how recent advances in microbial ecology have provided information about the potential interactions in distributed co-occurrence and metabolic networks in oxygen minimum zones, and we provide new insights into coupled biogeochemical processes in the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: O2 concentrations in the ocean.
Figure 2: O2 concentration affects ecosystem energy flow.
Figure 3: Bacterial diversity in the ocean.
Figure 4: Diversity in the four most abundant bacterial groups identified in OMZs.
Figure 5: Co-occurrence networks: correlations among bacterial OTUs in different OMZs.

Similar content being viewed by others

References

  1. Kasting, J. F. & Siefert, J. L. Life and the evolution of Earth's atmosphere. Science 296, 1066–1068 (2002). This concept paper outlines the interconnectedness between atmospheric transformation and microbial metabolism now and throughout evolutionary time.

    Article  CAS  PubMed  Google Scholar 

  2. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth's biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kumar, S. Fourth assessment report of the Intergovernmental Panel on Climate Change: important observations and conclusions. Curr. Sci. 92, 1034–1034 (2007).

    Google Scholar 

  4. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Falkowski, P. G. et al. Ocean deoxygenation: past, present and future. Eos Trans. AGU 92, 409–410 (2011).

    Article  Google Scholar 

  6. Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2008).

    Article  Google Scholar 

  7. Lam, P. & Kuypers, M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Ann. Rev. Mar. Sci. 3, 317–345 (2010).

    Article  Google Scholar 

  8. Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).

    Article  CAS  Google Scholar 

  9. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article  Google Scholar 

  10. Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Marine Sci. 2, 199–229 (2010). This paper reviews the evidence for global oxygen loss in the oceans over the past 50 years and discusses potential consequences of continued deoxygenation on the ecology and biogeochemistry of marine ecosystems.

    Article  Google Scholar 

  11. Whitney, F. A., Freeland, H. J. & Robert, M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179–199 (2007). This is the first report to describe a direct relationship between thermal stratification and oxygen loss in the interior waters of the NESAP over a 50 year time interval.

    Article  Google Scholar 

  12. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bograd, S. J. et al. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35, L12607 (2008).

    Article  CAS  Google Scholar 

  14. Emerson, S., Watanabe, Y. W., Ono, T. & Mecking, S. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J. Oceanogr. 60, 139–147 (2004).

    Article  Google Scholar 

  15. Rabalais, N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    Article  CAS  Google Scholar 

  16. Breitburg, D. L., Hondorp, D. W., Davias, L.A. & Diaz, R. J. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annu. Rev. Mar. Sci. 1, 329–349 (2009).

    Article  Google Scholar 

  17. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699 (2010).

    Article  CAS  Google Scholar 

  19. Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7, 2159–2190 (2010).

    Article  CAS  Google Scholar 

  20. Codispoti, L. A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Scientia Marina 65, 85–105 (2001).

    Article  CAS  Google Scholar 

  21. Gruber, N. in Nitrogen in the Marine Environment (eds Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J.) 1–50 (Elsevier, 2008).

    Book  Google Scholar 

  22. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752–4757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ward, B. B. et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78–81 (2009). References 22 and 23 highlight the major metabolic processes and microbial players that mediate loss of fixed nitogen in disparate OMZs.

    Article  CAS  PubMed  Google Scholar 

  24. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    Article  CAS  Google Scholar 

  25. Devol, A. H. & Hartnett, H. E. Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46, 1684–1690 (2001).

    Article  CAS  Google Scholar 

  26. Smethie, W. M. Nutrient regeneration and denitrification in low oxygen fjords. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 34, 983–1006 (1987).

    Article  CAS  Google Scholar 

  27. Ulloa, O. & Pantoja, S. The oxygen minimum zone of the eastern South Pacific. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56, 987–991 (2009).

    Article  CAS  Google Scholar 

  28. Fuenzalida, R., Schneider, W., Garces-Vargas, J., Bravo, L. & Lange, C. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56, 1027–1038 (2009).

    Google Scholar 

  29. Estrada, M. & M, C. Phytoplankton biomass and productivity off the Namibian coast. S. Afr. J. Mar. Sci. 5, 347–356 (1987).

    Article  Google Scholar 

  30. Canfield, D. E. Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling. Geochim. Cosmochim. Acta 70, 5753–5765 (2006).

    Article  CAS  Google Scholar 

  31. Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 36, 5315–5320 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Jorgensen, B. B. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil. Trans. R. Soc. Lond. B 298, 543–561 (1982).

    Article  CAS  Google Scholar 

  33. Scranton, M. I., Astor, Y., Bohrer, R., Ho, T. Y. & Muller-Karger, F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 48, 1605–1625 (2001).

    Article  CAS  Google Scholar 

  34. Anderson, J. J. & Devol, A. H. Deep water renewal in Saanich Inlet, an intermittently anoxic basin. Estuarine Coastal Marine Sci. 1, 1–10 (1973).

    Article  Google Scholar 

  35. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008). This influential concept article describes the ecological consequences of episodic or prolonged oxygen starvation on coastal marine ecosystems.

    Article  CAS  PubMed  Google Scholar 

  36. Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 51, 1159–1168 (2004).

    Article  CAS  Google Scholar 

  37. Grantham, B. A. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429, 749–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Hypoxia in the Gulf of Mexico. J. Environ. Qual. 30, 320–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Monteiro, P. M. S., van der Plas, A. K., Melice, J. L. & Florenchie, P. Interannual hypoxia variability in a coastal upwelling system: ocean-shelf exchange, climate and ecosystem-state implications. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 55, 435–450 (2008).

    Article  Google Scholar 

  40. Naqvi, S. W. A. et al. Severe fish mortality associated with 'red tide' observed in the sea off Cochin. Curr. Sci. 75, 543–544 (1998).

    Google Scholar 

  41. Zehnder, A. J. & Stumm, W. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J.) 1–38 (Wiley & Sons, 1988).

    Google Scholar 

  42. Codispoti, L. A. & Christensen, J. P. Nitrification, denitrification and nitrous oxide cycling in the easter tropical South Pacific Ocean. Marine Chem. 16, 277–300 (1985).

    Article  CAS  Google Scholar 

  43. Santoro, A. E., Buchwald, C., McIlvin, M. R., & Casciotti, K. L. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333, 1282–1285 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulder, A., Vandegraaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol. 16, 177–183 (1995).

    Article  CAS  Google Scholar 

  47. Lees, H. & Simpson, J. R. The biochemistry of nitrifying organisms. V. Nitrite oxidation by Nitrobacter. Biochem. J. 65, 297–305 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cole, J. A. & Brown, C. M. Nitrate reduction to ammonia by fermentative bacteria: a short circuit of the bacterial nitrogen cycle. FEMS Microbiol. Lett. 7, 65–72 (1980).

    Article  CAS  Google Scholar 

  49. Simon, J. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol. Rev. 26, 285–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Walsh, D. A. et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330, 1375–1378 (2010). This paper provides the first report of SO 42− reduction and concomitant sulphide oxidation in the ETSP OMZ.

    Article  CAS  PubMed  Google Scholar 

  52. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stevens, H. & Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. 10, 1244–1259 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Sunamura, M., Higashi, Y., Miyako, C., Ishibashi, J. & Maruyama, A. Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume. Appl. Environ. Microbiol. 70, 1190–1198 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sinninghe Damste, J. S. et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Appl. Environ. Microbiol. 68, 2997–3002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, X. et al. Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl. Environ. Microbiol. 72, 2679–2690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaikova, E. et al. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ. Microbiol. 12, 172–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Labrenz, M., Jost, G. & Jurgens, K. Distribution of abundant prokaryotic organisms in the water column of the central Baltic Sea with an oxic–anoxic interface. Aquat. Microb. Ecol. 46, 177–190 (2007).

    Article  Google Scholar 

  59. Belmar, L. Molina, V. & Ulloa, O. Abundance and phylogenetic identity of archaeoplankton in the permanent oxygen minimum zone of the eastern tropical South Pacific. FEMS Microbiol. Ecol. 78, 314–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuchs, B. M., Woebken, D., Zubkov, M. V., Burkill, P. & Amann, R. Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquat. Microb. Ecol. 39, 145–157 (2005).

    Article  Google Scholar 

  62. Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2009). This report is the first to detail abundant populations of SUP05 bacteria in association with process rate measurments for denitrification.

    Article  CAS  PubMed  Google Scholar 

  63. Bano, N. & Hollibaugh, J. T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505–518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Walsh, D. A. & Hallam, S. J. in Handbook of Molecular Microbial Ecology II: Metagenomics in Different Habitats (eds de Bruijn, F. J.) 253–267 (Wiley & Sons, 2011).

    Book  Google Scholar 

  65. Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the Dark Ocean. Science 333, 1296–1300 (2011). This paper reveals the hidden metabolic powers of Arctic96BD-19 and SAR324 bacteria using single-cell genomics techniques.

    Article  CAS  PubMed  Google Scholar 

  66. Lin, X. J., Scranton, M. I., Chistoserdov, A. Y., Varela, R. & Taylor, G. T. Spatiotemporal dynamics of bacterial populations in the anoxic Cariaco Basin. Limnol. Oceanogr. 53, 37–51 (2008).

    Article  CAS  Google Scholar 

  67. Grote, J., Jost, G., Labrenz, M. Herndl, G. J. & Jürgens, K. Epsilonproteobacteria Represent the Major Portion of Chemoautotrophic Bacteria in Sulfidic Waters of Pelagic Redoxclines of the Baltic and Black Seas. Appl. Environ. Microbiol. 77, 7456–7551 (2008).

    Google Scholar 

  68. Grote, J. et al. Genome and physiology of a model for responsible Epsilonproteobacterium sulfide detoxification in marine oxygen depletion zones. Proc. Natl Acad. Sci. USA 109, 506–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Field, K. G. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63, 63–70 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Schwalbach, M. S., Tripp, H. J., Steindler, L., Smith, D. P. & Giovannoni, S. J. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. González, J. M. et al. Silicibacter pomeroyi sp. nov. & Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. Syst. Evol. Microbiol. 53, 1261–1269 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Fuhrman, J. A., McCallum, K. & Davis, A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59, 1294–1302 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gordon, D. & Giovannoni, S. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 62, 1171–1177 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997).

    Article  Google Scholar 

  80. Wright, T. D., Vergin, K. L., Boyd, P. W. & Giovannoni, S. J. A novel δ-subdivision proteobacterial lineage from the lower ocean surface layer. Appl. Environ. Microbiol. 63, 1441–1448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown, M. V. & Donachie, S. P. Evidence for tropical endemicity in the Deltaproteobacteria Marine Group B/SAR324 bacterioplankton clade. Aquat. Microb. Ecol. 46, 107–115 (2007).

    Article  Google Scholar 

  82. Shanks, A. L. & Reeder, M. L. Reducing microzones and sulfide production in marine snow. Marine Ecol. Progr. Ser. 96, 43–47 (1993).

    Article  Google Scholar 

  83. Alldredge, A. L. & Cohen, Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Dugdale, R. C. Goering, J. J., Barber, R. T., Smith, R. L. & Packard, T. T. Denitrification and hydrogen sulfide in the Peru upwelling region during 1976. Deep Sea Res. 24, 601–608 (1977).

    Article  CAS  Google Scholar 

  85. Bruchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).

    Article  CAS  Google Scholar 

  86. Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012). This article provides the first gene expression profiles for sulphide oxidation, denitrification, anammox and nitrification in the ETSP OMZ.

    Article  CAS  PubMed  Google Scholar 

  87. Sorensen, J. B. Nitrate reduction in marine sediments: pathways and interactions with iron and sulfur-cycling. Geomicrobiol. J. 5, 401–421 (1987).

    Article  Google Scholar 

  88. Samuelsson, M. & Rönner, U. Ammonium production by dissimilatory nitrate reducers isolated from Baltic Sea water, as indicated by 15N study. Appl. Environ. Microbiol. 44, 1241–1243 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kartal, B. et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Brune, A., Frenzel, P. & Cypionka, H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol. Rev. 5, 691–710 (2000).

    Article  Google Scholar 

  91. Stewart, F. J., Newton, I. L. G. & Cavanaugh, C. M. Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol. 13, 439–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Dubilier, N. et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411, 298–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Rev. Microbiol. 7, 568–577 (2009).

    Article  CAS  Google Scholar 

  95. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Chisholm, S. W. & Cary, C. Ecological genomics: the application of genomic sciences to understanding the structure and function of marine ecosystems. In Report, NSF workshop on Marine Microbial Genomics 1–20 (Chisholm Univ. Press, 2001).

    Google Scholar 

  99. Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008).

    Article  CAS  Google Scholar 

  100. Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Fuhrman, J. A. & Steele, J. A. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Microb. Ecol. 53, 69–81 (2008).

    Article  Google Scholar 

  102. Steele, J. A. et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010). This paper describes a useful method for detecting co-occurrence patterns within and between microbial communities using geo-referenced taxonomic and functional-gene information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alldredge, A. L. & Silver, M. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).

    Article  Google Scholar 

  106. Karl, D. M., Knauer, G. A., Martin, J. H. & Ward, B. B. Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature 309, 54–56 (1984).

    Article  CAS  Google Scholar 

  107. Woebken, D., Fuchs, B. M., Kuypers, M. M. & Amann, R. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl. Environ. Microbiol. 73, 4648–4657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Karl, D. M. & Tilbrook, B. D. Production and transport of methane in oceanic particulate organic-matter. Nature 368, 732–734 (1994).

    Article  CAS  Google Scholar 

  109. Paerl, H. W. & Pinckney, J. L. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb. Ecol. 31, 225–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

    Book  Google Scholar 

  112. Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Barabasi, A. L. & Bonabeau, E. Scale-free networks. Sci. Am. 288, 60–69 (2003).

    Article  PubMed  Google Scholar 

  114. Yamada, T. & Bork, P. Evolution of biomolecular networks — lessons from metabolic and protein interactions. Nature Rev. Mol. Cell Biol. 10, 791–803 (2009).

    Article  CAS  Google Scholar 

  115. Garcia, H. E. et al. World Ocean Atlas 2009 Vol. 3 (ed. Levitus, S.) (US Government Printing Office, 2010).

    Google Scholar 

Download references

Acknowledgements

This work was carried out under the auspices of the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI) and the Canadian Institute for Advanced Research (CIFAR). J.J.W. was supported by the NSERC, and K.M.K. was supported by the Tula Foundation-funded Centre for Microbial Diversity and Evolution (CMDE) at the University of British Columbia, Vancouver, Canada. We thank N. Korniyuk, P. Macoun, V. Tunnicliffe, F. Whitney, M. Robert, A. Hawley and N. Hanson for insightful commentary; D. Walsh for assistance with data visualization; P. Tortell for help with figure 1; and the anonymous reviewers for insightful commentary and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Hallam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Steven J. Hallam's homepage

Center for Coastal Margin Observation and Prediction

Genbank

Greengenes taxonomy database

Institute of Ocean Sciences

Leibniz Institute for Baltic Sea Research

Monterey Bay Aquarium Research Institute

The Eastern South Pacific Oxygen Minimum Zone

The Fourth Paradigm: Data-Intensive Scientific Discovery

Victoria Experimental Network Under the Sea (VENUS)

Glossary

Ventilated

Pertaining to the ocean: supplied with atmospheric gases through processes including exchange between the air and sea, exchange between the surface mixed layer and immediate subsurface layer, and circulation in the interior of the ocean.

Thermal stratification

A temperature-layering effect that occurs in water owing to differences in water density: warm water is less dense than cool water and therefore tends to float on top of the cooler, heavier water.

Benthic ecosystems

Ecosystems residing at the lowest level of a body of water such as an ocean or a lake, including the sediment surface and subsurface layers.

Pelagic ecosystems

Ecosystems residing in the region of a body of water that is neither close to the bottom nor near the shore.

Radiative forcing effects

The change in net irradiance between different layers of the atmosphere.

Coastal upwelling

The upwards movement of deep, nutrient-rich water along a coast, caused by wind-driven currents.

Oxycline

A sharp gradient in oxygen concentration that is associated with a redoxcline (a shift in electron donor and acceptor usage).

Eutrophic

Pertaining to a body of water: rich in mineral and organic nutrients.

Eutrophication

Excessive nutrient input to a lake or other body of water (frequently owing to run-off from the land), resulting in explosive plant growth and animal mortality owing to oxygen starvation.

Chemoautotrophic

Capable of using chemical energy to synthesize organic molecules from inorganic substances.

Dissimilatory

Metabolic processes through which elements are oxidized or reduced and for which the organism uses the energy released in the process (catabolism).

Endemism

The ecological state of being unique (endemic) to a defined geographical location, which can be a particular habitat, zone or environment.

Operational taxonomic units

(OTUs). Groups of organisms that are used in phylogenetic studies. An OTU is tentatively assumed to be a valid taxon for purposes of phylogenetic analysis.

Ecotype

A group of organisms within a species that are selectively adapted to a particular set of environmental conditions and therefore exhibit behavioural, structural or physiological differences from other members of the species.

Heterotrophic

Dependent on obtaining carbon for growth and energy from complex organic compounds.

Entner–Doudoroff pathway

An alternative series of reactions for the catabolism of glucose to pyruvate, using a different set of enzymes from those used in either glycolysis or the pentose phosphate pathway.

Dark ocean

The depths of the ocean beyond which less than 1% of sunlight penetrates; also known as the aphotic zone.

Syntrophy

Metabolite exchange that occurs between two or more groups of organisms and is necessary for cell growth or energy production.

Chemolithoautotrophic

Capable of obtaining energy from the oxidation of inorganic compounds and carbon from the fixation of carbon dioxide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J., Konwar, K. & Hallam, S. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10, 381–394 (2012). https://doi.org/10.1038/nrmicro2778

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2778

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology