Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specifying and protecting germ cell fate

Key Points

  • Germ cells generate an organism's gametes and progeny. To accomplish this, germ cells must be properly specified and protected during development.

  • In some animals, specification of the germline is continuous and involves the segregation of cytoplasmic 'determinants' during embryogenesis (preformation). In other animals, the germline is newly formed and requires inductive signalling during embryogenesis (induction).

  • Among the diverse mechanisms of germ cell specification are: transmission of maternally supplied germ plasm containing germ granules to primordial germ cells (PGCs); transmission of epigenetic memory from parent germ cells to PGCs in progeny; and expression of transcription factors that programme embryonic cells to develop as PGCs.

  • Aberrant gene expression or misguided PGC migration can cause germ cells to exhibit somatic features and even contribute to somatic tissues. In the gonad, germ cells are prevented from expressing genes that would threaten germline health and development.

  • The mechanisms that suppress aberrant gene expression and protect germline fate include global transcriptional repression in PGCs, maintenance of a germline chromatin state and translation of only germline-appropriate transcripts in germ cells.

Abstract

Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Findings that support or challenge the notion that germ granules are 'determinants' of PGC fate.
Figure 2: Chromatin regulation in the PGCs of mice and C. elegans.
Figure 3: Diverse factors and mechanisms that repress expression of somatic genes and protect germ cells from reprogramming towards somatic cells.
Figure 4: Conditions that cause adult germ cells to reprogramme towards somatic cells in C. elegans.

Similar content being viewed by others

References

  1. Seydoux, G. & Braun, R. E. Pathway to totipotency: lessons from germ cells. Cell 127, 891–904 (2006).

    CAS  PubMed  Google Scholar 

  2. Hegner, R. W. Effects of removing the germ-cell determinants from the eggs of some chrysomelid beetles. Biol. Bull. 16, 19–26 (1908).

    Google Scholar 

  3. Eddy, E. M. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43, 229–280 (1975).

    CAS  PubMed  Google Scholar 

  4. Strome, S. & Wood, W. B. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35, 15–25 (1983).

    CAS  PubMed  Google Scholar 

  5. Hay, B., Jan, L. Y. & Jan, Y. N. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587 (1988).

    CAS  PubMed  Google Scholar 

  6. Ephrussi, A., Dickinson, L. K. & Lehmann, R. oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    CAS  PubMed  Google Scholar 

  7. Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–647 (1991).

    CAS  PubMed  Google Scholar 

  8. Evans, T., Wade, C. M., Chapman, F. A., Johnson, A. D. & Loose, M. Acquisition of germ plasm accelerates vertebrate evolution. Science 344, 200–203 (2014).

    CAS  PubMed  Google Scholar 

  9. Spiegelman, M. & Bennett, D. A light- and electron-microscopic study of primordial germ cells in the early mouse embryo. J. Embryol. Exp. Morphol. 30, 97–118 (1973).

    CAS  PubMed  Google Scholar 

  10. Toyooka, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149 (2000).

    CAS  PubMed  Google Scholar 

  11. Chuma, S. et al. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl Acad. Sci. USA 103, 15894–15899 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, L. D. The role of a 'germinal plasm' in the formation of primordial germ cells in Rana pipiens. Dev. Biol. 14, 330–347 (1966).

    CAS  PubMed  Google Scholar 

  13. Okada, M., Kleinman, I. A. & Schneiderman, H. A. Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev. Biol. 37, 43–54 (1974).

    CAS  PubMed  Google Scholar 

  14. Illmensee, K. & Mahowald, A. P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl Acad. Sci. USA 71, 1016–1020 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tada, H., Mochii, M., Orii, H. & Watanabe, K. Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev. Biol. 371, 86–93 (2012).

    CAS  PubMed  Google Scholar 

  16. Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681 (1987).

    PubMed  Google Scholar 

  17. St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    CAS  PubMed  Google Scholar 

  18. Ephrussi, A. & Lehmann, R. Induction of germ cell formation by oskar. Nature 358, 387–392 (1992). This paper demonstrates that mislocalization of germ-plasm components to an ectopic site, the anterior pole of the D. melanogaster embryo, is sufficient to induce formation of functional PGCs at that site.

    CAS  PubMed  Google Scholar 

  19. Smith, J. L., Wilson, J. E. & Macdonald, P. M. Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70, 849–859 (1992).

    CAS  PubMed  Google Scholar 

  20. Wylie, C. C., Holwill, S., O'Driscoll, M., Snape, A. & Heasman, J. Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis. Cold Spring Harb. Symp. Quant. Biol. 50, 37–43 (1985).

    CAS  PubMed  Google Scholar 

  21. Strome, S., Martin, P., Schierenberg, E. & Paulsen, J. Transformation of the germ line into muscle in mes-1 mutant embryos of C. elegans. Development 121, 2961–2972 (1995).

    CAS  PubMed  Google Scholar 

  22. Lerit, D. A. & Gavis, E. R. Transport of germ plasm on astral microtubules directs germ cell development in Drosophila. Curr. Biol. 21, 439–448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallo, C. M., Wang, J. T., Motegi, F. & Seydoux, G. Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 330, 1685–1689 (2010). This paper describes a C. elegans mutant that fails to partition maternally provided germ granules to the germline blastomeres but nevertheless forms and correctly specifies PGCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. eLife 3, e04591 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Sinsimer, K. S., Lee, J. J., Thiberge, S. Y. & Gavis, E. R. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep. 5, 1169–1177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Eddy, E. M. & Ito, S. Fine structural and radioautographic observations on dense perinuclear cytoplasmic material in tadpole oocytes. J. Cell Biol. 49, 90–108 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawasaki, I. et al. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94, 635–645 (1998).

    CAS  PubMed  Google Scholar 

  28. Sheth, U., Pitt, J., Dennis, S. & Priess, J. R. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 137, 1305–1314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Google Scholar 

  30. Gao, M. & Arkov, A. L. Next generation organelles: structure and role of germ granules in the germline. Mol. Reprod. Dev. 80, 610–623 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Seervai, R. N. H. & Wessel, G. M. Lessons for inductive germline determination. Mol. Reprod. Dev. 80, 590–609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Updike, D. & Strome, S. P granule assembly and function in Caenorhabditis elegans germ cells. J. Androl. 31, 53–60 (2010).

    CAS  PubMed  Google Scholar 

  33. Arkov, A. L., Wang, J.-Y. S., Ramos, A. & Lehmann, R. The role of Tudor domains in germline development and polar granule architecture. Development 133, 4053–4062 (2006).

    CAS  PubMed  Google Scholar 

  34. Chen, C., Nott, T. J., Jin, J. & Pawson, T. Deciphering arginine methylation: Tudor tells the tale. Nat. Rev. Mol. Cell Biol. 12, 629–642 (2011).

    CAS  PubMed  Google Scholar 

  35. Kawasaki, I. et al. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167, 645–661 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bontems, F. et al. Bucky ball organizes germ plasm assembly in zebrafish. Curr. Biol. 19, 414–422 (2009).

    CAS  PubMed  Google Scholar 

  37. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    CAS  PubMed  Google Scholar 

  39. Toretsky, J. A. & Wright, P. E. Assemblages: functional units formed by cellular phase separation. J. Cell Biol. 206, 579–588 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmidt, H. B. & Görlich, D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 4, 1–30 (2015).

    Google Scholar 

  41. Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K. & Zaslavsky, B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett. 589, 15–22 (2015).

    CAS  PubMed  Google Scholar 

  42. Updike, D. L., Hachey, S. J., Kreher, J. & Strome, S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192, 939–948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanazawa, M., Yonetani, M. & Sugimoto, A. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J. Cell Biol. 192, 929–937 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hubstenberger, A., Noble, S. L., Cameron, C. & Evans, T. C. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev. Cell 27, 161–173 (2013).

    CAS  PubMed  Google Scholar 

  45. Magnúsdóttir, E. et al. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat. Cell Biol. 15, 905–915 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Aramaki, S. et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev. Cell 27, 516–529 (2013). This paper documents how mouse PGCs are induced by WNT3 and BMP4 signalling: WNT3 promotes expression of the mesodermal transcription factor T, and BMP4 permits T to directly activate two key transcription factors (BLIMP1 and PRDM14) for PGC fate.

    CAS  PubMed  Google Scholar 

  47. Saitou, M. & Yamaji, M. Primordial germ cells in mice. Cold Spring Harb. Perspect. Biol. 4, a008375 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Magnúsdóttir, E. & Surani, M. A. How to make a primordial germ cell. Development 141, 245–252 (2014).

    PubMed  Google Scholar 

  49. Cantú, A. V. & Laird, D. J. Wnt and Bmp fit germ cells to a T. Dev. Cell 27, 485–487 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Leitch, H. G., Tang, W. W. C. & Surani, M. A. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187 (2013).

    CAS  PubMed  Google Scholar 

  51. Hackett, J. A. & Surani, M. A. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15, 416–430 (2014).

    CAS  PubMed  Google Scholar 

  52. Ohinata, Y. et al. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584 (2009).

    CAS  PubMed  Google Scholar 

  53. Nakaki, F. et al. Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501, 222–226 (2013).

    CAS  PubMed  Google Scholar 

  54. Kurimoto, K. et al. Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 16, 1–16 (2015).

    Google Scholar 

  55. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    CAS  PubMed  Google Scholar 

  56. Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–1022 (2008).

    CAS  PubMed  Google Scholar 

  57. Chuma, S., Hosokawa, M., Tanaka, T. & Nakatsuji, N. Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol. Cell. Endocrinol. 306, 17–23 (2009).

    CAS  PubMed  Google Scholar 

  58. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015). This paper investigate the specification of human PGCs and show that SOX17, an endoderm-required transcription factor, is the key regulator and that the role of BLIMP1 is to repress somatic fates.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ewen-Campen, B., Srouji, J. R., Schwager, E. E. & Extavour, C. G. oskar predates the evolution of germ plasm in insects. Curr. Biol. 22, 2278–2283 (2012).

    CAS  PubMed  Google Scholar 

  60. Ewen-Campen, B., Donoughe, S., Clarke, D. N. & Extavour, C. G. Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr. Biol. 23, 835–842 (2013). This paper shows that, in G. bimaculatus (cricket) embryos, PGCs arise from abdominal mesoderm and are not specified by cytoplasmic inheritance of maternal determinants.

    CAS  PubMed  Google Scholar 

  61. Strome, S., Kelly, W. G., Ercan, S. & Lieb, J. D. Regulation of the X chromosomes in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol. 6, a018366 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Rechtsteiner, A. et al. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet. 6, e1001091 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Gaydos, L. J., Rechtsteiner, A., Egelhofer, T. A., Carroll, C. R. & Strome, S. Antagonism between MES-4 and polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep. 2, 1169–1177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bender, L. B. et al. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133, 3907–3917 (2006).

    CAS  PubMed  Google Scholar 

  65. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    CAS  PubMed  Google Scholar 

  67. Gaydos, L. J., Wang, W. & Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, A. & Seydoux, G. Less is more: specification of the germline by transcriptional repression. Development 135, 3817–3827 (2008). This paper provides an excellent overview of transcriptional-silencing mechanisms during PGC specification in C. elegans, D. melanogaster and mice.

    CAS  PubMed  Google Scholar 

  69. Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu. Rev. Biochem. 81, 119–143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713–716 (1996).

    CAS  PubMed  Google Scholar 

  71. Ghosh, D. & Seydoux, G. Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 178, 235–243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mello, C. C., Draper, B. W., Krause, M., Weintraub, H. & Priess, J. R. The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell 70, 163–176 (1992).

    CAS  PubMed  Google Scholar 

  73. Hanyu-Nakamura, K., Sonobe-Nojima, H., Tanigawa, A., Lasko, P. & Nakamura, A. Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature 451, 730–733 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakamura, A., Amikura, R., Mukai, M., Kobayashi, S. & Lasko, P. F. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science 274, 2075–2079 (1996).

    CAS  PubMed  Google Scholar 

  75. Martinho, R. G., Kunwar, P. S., Casanova, J. & Lehmann, R. A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells. Curr. Biol. 14, 159–165 (2004).

    CAS  PubMed  Google Scholar 

  76. Deshpande, G., Calhoun, G., Jinks, T. M., Polydorides, A. D. & Schedl, P. Nanos downregulates transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos. Mech. Dev. 122, 645–657 (2005).

    CAS  PubMed  Google Scholar 

  77. Deshpande, G., Calhoun, G., Yanowitz, J. L. & Schedl, P. D. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 99, 271–281 (1999).

    CAS  PubMed  Google Scholar 

  78. Asaoka-Taguchi, M., Yamada, M., Nakamura, A., Hanyu, K. & Kobayashi, S. Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat. Cell Biol. 1, 431–437 (1999).

    CAS  PubMed  Google Scholar 

  79. Palancade, B., Bellier, S., Almouzni, G. & Bensaude, O. Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos. J. Cell Sci. 114, 2483–2489 (2001).

    CAS  PubMed  Google Scholar 

  80. Swartz, S. Z. et al. Deadenylase depletion protects inherited mRNAs in primordial germ cells. Development 141, 3134–3142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai, F., Singh, A. & King, M. L. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. Development 1486, 1476–1486 (2012).

    Google Scholar 

  82. Ewen-Campen, B., Schwager, E. E. & Extavour, C. G. M. The molecular machinery of germ line specification. Mol. Reprod. Dev. 77, 3–18 (2010).

    CAS  PubMed  Google Scholar 

  83. Shirae-Kurabayashi, M., Matsuda, K. & Nakamura, A. Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 138, 2871–2881 (2011).

    CAS  PubMed  Google Scholar 

  84. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    CAS  PubMed  Google Scholar 

  86. Seki, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134, 2627–2638 (2007).

    CAS  PubMed  Google Scholar 

  87. Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    CAS  PubMed  Google Scholar 

  88. Schaner, C. E., Deshpande, G., Schedl, P. D. & Kelly, W. G. A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell 5, 747–757 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Checchi, P. M. & Kelly, W. G. emb-4 is a conserved gene required for efficient germline-specific chromatin remodeling during Caenorhabditis elegans embryogenesis. Genetics 174, 1895–1906 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A. C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Spencer, W. C. et al. A spatial and temporal map of C. elegans gene expression. Genome Res. 21, 325–341 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278, 440–458 (2005).

    CAS  PubMed  Google Scholar 

  93. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    CAS  PubMed  Google Scholar 

  94. Tursun, B., Patel, T., Kratsios, P. & Hobert, O. Direct conversion of C. elegans germ cells into specific neuron types. Science 331, 304–308 (2011).

    CAS  PubMed  Google Scholar 

  95. Patel, T., Tursun, B., Rahe, D. P. & Hobert, O. Removal of Polycomb repressive complex 2 makes C. elegans germ cells susceptible to direct conversion into specific somatic cell types. Cell Rep. 2, 1178–1186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Eun, S. H., Shi, Z., Cui, K., Zhao, K. & Chen, X. A non-cell autonomous role of E(z) to prevent germ cells from turning on a somatic cell marker. Science 343, 1513–1516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Käser-Pébernard, S., Müller, F. & Wicky, C. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells. Stem Cell Rep. 2, 547–559 (2014).

    Google Scholar 

  98. Robert, V. J. et al. The SET-2/SET1 histone H3K4 methyltransferase maintains pluripotency in the Caenorhabditis elegans germline. Cell Rep. 9, 443–450 (2014).

    CAS  PubMed  Google Scholar 

  99. Leitch, H. G. et al. On the fate of primordial germ cells injected into early mouse embryos. Dev. Biol. 385, 155–159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Leitch, H. G. et al. Rebuilding pluripotency from primordial germ cells. Stem Cell Rep. 1, 66–78 (2013).

    CAS  Google Scholar 

  101. Rais, Y. et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502, 65–70 (2013). This paper describes how depletion of MBD3, a component of the NuRD chromatin-repressor complex, allows nearly complete reprogramming of mouse and human somatic cells to induced pluripotent stem cells.

    CAS  PubMed  Google Scholar 

  102. Ciosk, R., DePalma, M. & Priess, J. R. Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311, 851–853 (2006).

    CAS  PubMed  Google Scholar 

  103. Biedermann, B. et al. Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev. Cell 17, 355–364 (2009).

    CAS  PubMed  Google Scholar 

  104. Sugimura, I. & Lilly, M. A. Bruno inhibits the expression of mitotic cyclins during the prophase I meiotic arrest of Drosophila oocytes. Dev. Cell 10, 127–135 (2006).

    CAS  PubMed  Google Scholar 

  105. Tocchini, C. et al. The TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans. PLoS Genet. 10, e1004533 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor Brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006).

    CAS  PubMed  Google Scholar 

  107. Lee, C.-Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P. & Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev. Cell 10, 441–449 (2006).

    CAS  PubMed  Google Scholar 

  108. Neumüller, R. A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454, 241–245 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Worringer, K. A. et al. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14, 40–52 (2014).

    CAS  PubMed  Google Scholar 

  110. Richardson, L. C., Wingo, P. A., Zack, M. M., Zahran, H. S. & King, J. B. Health-related quality of life in cancer survivors between ages 20 and 64 years: population-based estimates from the Behavioral Risk Factor Surveillance System. Cancer 112, 1380–1389 (2008).

    PubMed  Google Scholar 

  111. Kanetsky, P. A. et al. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum. Mol. Genet. 20, 3109–3117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Youngren, K. K. et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435, 360–364 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bustamante-Marín, X., Garness, J. A. & Capel, B. Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology. Int. J. Dev. Biol. 57, 201–210 (2013).

    PubMed  Google Scholar 

  114. Updike, D. L., Knutson, A. K., Egelhofer, T. A., Campbell, A. C. & Strome, S. Germ-granule components prevent somatic development in the C. elegans germline. Curr. Biol. 24, 970–975 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Whitehurst, A. W. Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251–272 (2014).

    CAS  PubMed  Google Scholar 

  116. Yuan, L. et al. Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells. Oncol. Rep. 31, 342–350 (2014).

    CAS  PubMed  Google Scholar 

  117. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010). This paper shows that brain tumours in lethal (3) malignant brain tumour -mutant D. melanogaster display expression of key genes for germline development and that knockdown of those genes is sufficient to suppress tumour growth.

    CAS  PubMed  Google Scholar 

  118. Voronina, E. & Seydoux, G. The C. elegans homolog of nucleoporin Nup98 is required for the integrity and function of germline P granules. Development 137, 1441–1450 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pitt, J. N., Schisa, J. A. & Priess, J. R. P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev. Biol. 219, 315–333 (2000).

    CAS  PubMed  Google Scholar 

  120. Claycomb, J. M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gu, W. et al. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151, 1488–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, G. & Reinke, V. A. C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18, 861–867 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bagijn, M. P. et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337, 574–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wedeles, C. J., Wu, M. Z. & Claycomb, J. M. Silent no more: endogenous small RNA pathways promote gene expression. Worm 3, e28641 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Amander Clark and anonymous reviewers for helpful discussion and comments on this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Strome.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Primordial germ cells

(PGCs). The nascent germ cells formed during embryogenesis, which ultimately generate oocytes and/or sperm in adults.

Blastomere

A type of cell that is produced by cleavage divisions during early embryogenesis.

Genital ridge

A ridge of embryonic mesoblast cells that envelopes primordial germ cells in vertebrates and develops into the sex organs.

Tudor-domain proteins

Proteins containing a conserved structural motif that binds symmetrically dimethylated Arg. This domain was originally characterized in the Drosophila melanogaster protein Tudor.

Argonaute proteins

Proteins that contain a PAZ and a PIWI domain and that bind different classes of small RNAs (for example, small interfering RNAs, micro RNAs and PIWI-interacting RNAs), which guide the Argonaute proteins to their specific target mRNAs.

Ground state

A cellular condition that is liberated from epigenetic and developmental constraints, like that found in pluripotent epiblasts.

Open chromatin

Non-compacted euchromatin that is accessible to transcriptional machinery and for gene expression.

CRISPR-based genome editing

A gene-editing technique that is derived from the bacterial immune system and is widely used to create deletions, insertions and modifications of targeted genome sequences. Since 2013, this technique has been used for genome editing in a wide range of different organisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strome, S., Updike, D. Specifying and protecting germ cell fate. Nat Rev Mol Cell Biol 16, 406–416 (2015). https://doi.org/10.1038/nrm4009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing