Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of chromosome behaviour during mitosis

Key Points

  • The major goal of mitosis is to distribute the genetic material equally between two daughter cells.

  • Movement of the chromosomes on the spindle is driven by both the polymerization dynamics of microtubules and the molecular motor proteins that associate with kinetochores and chromosome arms.

  • The dynamic linkage of the microtubules to the kinetochore is probably a major factor that drives chromosome movements.

  • Chromosome congression consists of multiple individual mechanisms that enhance the fidelity of mitosis.

  • A complete understanding of the mechanisms that drive chromosome motility requires an integrated approach, combining molecular and cell biology, high-resolution imaging, biophysical and biochemical reconstitution approaches, and mathematical and computational tools.

Abstract

For over a century, scientists have strived to understand the mechanisms that govern the accurate segregation of chromosomes during mitosis. The most intriguing feature of this process, which is particularly prominent in higher eukaryotes, is the complex behaviour exhibited by the chromosomes. This behaviour is based on specific and highly regulated interactions between the chromosomes and spindle microtubules. Recent discoveries, enabled by high-resolution imaging combined with the various genetic, molecular, cell biological and chemical tools, support the idea that establishing and controlling the dynamic interaction between chromosomes and microtubules is a major factor in genomic fidelity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the mitotic spindle.
Figure 2: Organization of the kinetochore–microtubule interface.
Figure 3: Congression models for chromosome bi-orientation.
Figure 4: Congression models involving microtubule- and motor-based forces.

Similar content being viewed by others

References

  1. Sauer, G. et al. Proteome analysis of the human mitotic spindle. Mol. Cell. Proteomics 4, 35–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  3. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature Rev. Mol. Cell Biol. 10, 478–487 (2009).

    Article  CAS  Google Scholar 

  4. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kuriyama, R. & Borisy, G. G. Microtubule-nucleating activity of centrosomes in chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J. Cell Biol. 91, 822–826 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  9. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  PubMed  Google Scholar 

  11. Jokelainen, P. T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Ris, H. & Witt, P. L. Structure of the mammalian kinetochore. Chromosoma 82, 153–170 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. McEwen, B. F., Hsieh, C. E., Mattheyses, A. L. & Rieder, C. L. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107, 366–375 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007). A high-resolution look at the ultrastructure of the kinetochore.

    Article  PubMed  CAS  Google Scholar 

  15. Vagnarelli, P., Ribeiro, S. A. & Earnshaw, W. C. Centromeres: old tales and new tools. FEBS Lett. 582, 1950–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cimini, D., Moree, B., Canman, J. C. & Salmon, E. D. Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J. Cell Sci. 116, 4213–4225 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4, e6564 (2009). References 17 and 18 make the important discovery that multipolarity leads to improper kinetochore attachments, which are the ultimate source of chromosome instability.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicklas, R. B., Krawitz, L. E. & Ward, S. C. Odd chromosome movement and inaccurate chromosome distribution in mitosis and meiosis after treatment with protein kinase inhibitors. J. Cell Sci. 104, 961–973 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16, 1711–1718 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Fuller, B. G. et al. Midzone activation of Aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol. 19, 1937–1942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biol. 11, 27–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. USA 82, 4404–4408 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENPE inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164 (1995). An elegant demonstration of the insight provided by in vitro reconstitution experiments.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. McCleland, M. L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17, 101–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson-Kubalek, E. M., Cheeseman, I. M., Yoshioka, C., Desai, A. & Milligan, R. A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182, 1055–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westermann, S. et al. Formation of a dynamic kinetochore–microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Grishchuk, E. L., Molodtsov, M. I., Ataullakhanov, F. I. & McIntosh, J. R. Force production by disassembling microtubules. Nature 438, 384–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Grishchuk, E. L., Spiridonov, I. S. & McIntosh, J. R. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minusenddirected, kinesin-like protein. Mol. Biol. Cell 18, 2216–2225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Daum, J. R. et al. Ska3 Is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr. Biol. 19, 1467–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaitanos, T. N. et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raaijmakers, J. A., Tanenbaum, M. E., Maia, A. F. & Medema, R. H. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J. Cell Sci. 122, 2436–2445 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, X., McLeod, I., Anderson, S., Yates, J. R. 3rd, & He, X. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 24, 2919–2930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanchez-Perez, I. et al. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24, 2931–2943 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peterson, J. B. & Ris, H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J. Cell Sci. 22, 219–242 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Grishchuk, E. L. et al. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc. Natl. Acad. Sci. USA 105, 15423–15428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McIntosh, J. R. et al. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322–333 (2008). A high-resolution look at the ultrastructure of the kinetochore–microtubule linkage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. VandenBeldt, K. J. et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr. Biol. 16, 1217–1223 (2006). This paper reports the surprising finding that the distribution of microtubule-end states at the kinetochore are mixed on both leading and lagging kinetochores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mazia, D. in The Cell, Vol. 3 (eds. Brachet, J. & Mirsky, A. E.) 77–412 (Academic Press, Inc., New York, 1961).

    Book  Google Scholar 

  56. Rieder, C. L., Davison, E. A., Jensen, L. C. W., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and the half-spindle. J. Cell Biol. 103, 581–591 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 135, 315–327 (1996). A classic cytology paper defining forces on kinetochores.

    Article  CAS  PubMed  Google Scholar 

  58. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Ke, K., Cheng, J. & Hunt, A. J. The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr. Biol. 19, 807–815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Skibbens, R., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993). The first paper to define the features of kinetochore directional instability.

    Article  CAS  PubMed  Google Scholar 

  61. Kapoor, T. M. & Compton, D. A. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J. Cell Biol. 157, 551–556 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rieder, C. L. & Alexander, S. Kinetochores are transported polewards along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Cai, S., O'Connell, C. B., Khodjakov, A. & Walczak, C. E. Chromosome congression in the absence of kinetochore fibres. Nature Cell Biol. 11, 832–838 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006). This seminal paper redefined ideas on how chromosomes congress to the spindle equator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wignall, S. M. & Villeneuve, A. M. Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nature Cell Biol. 11, 839–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Brunet, S. et al. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J. Cell Biol. 146, 1–12 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kirschner, M. W. & Mitchison, T. J. Beyond self assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Schaar, B. T., Chan, G. K. T., Maddox, P., Salmon, E. D. & Yen, T. J. CENPE function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373–1382 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wood, K. W., Sakowicz, R., Goldstein, L. S. B. & Cleveland, D. W. CENPE is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005). An elegant example of how mathematical modelling can contribute to our understanding of chromosome motility.

    Article  CAS  PubMed  Google Scholar 

  72. Schrader, F. Mitosis (Columbia University Press, 1953).

    Book  Google Scholar 

  73. Telzer, B. R., Moses, M. J. & Rosenbaum, J. L. Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. Proc. Natl. Acad. Sci. USA 72, 4023–7402 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Debrabander, M. et al. Microtubule dynamics during the cell cycle: the effects of taxol and nocodazole on the microtubule system of PtK2 cells at different stages of the mitotic cycle. Int. Rev. Cytology 101, 215–273 (1986).

    Article  CAS  Google Scholar 

  75. Witt, P. L., Ris, H. & Borisy, G. G. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81, 483–505 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003). This paper was the first to truly challenge the search and capture model of chromosome congression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167, 831–840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lambert, A. M. & Lloyd, C. W. in Microtubules (eds. Hyams, J. S. & Lloyd, C. W.) 325–342 (Wiley-Liss, New York, 1994).

    Google Scholar 

  80. McKim, K. S. & Hawley, R. S. Chromosomal control of meiotic cell division. Science 270, 1595–1601 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Ostergren, G. The mechanism of coordination in bivalents and multivalents. The theory of orientation by pulling. Hereditas 37, 85–156 (1951).

    Article  Google Scholar 

  82. Hays, T. & Salmon, E. D. Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. J. Cell Biol. 110, 391–404 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Hays, T. S., Wise, D. & Salmon, E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J. Cell Biol. 93, 374–389 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Yen, T. J. et al. CENPE, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10, 1245–1254 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hyman, A. A. & Mitchison, T. J. Two different microtubule-based motor activities with opposite polarites in kinetochores. Nature 351, 206–211 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Darlington, C. Recent Advances in Cytology. (London: Churchill, 1937).

    Google Scholar 

  89. Ault, J. G., DeMarco, A. J., Salmon, E. D. & Rieder, C. L. Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. J. Cell Sci. 99, 701–710 (1991). The first paper to clearly show the polar ejection force.

    Article  PubMed  Google Scholar 

  90. Tokai, N. et al. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J. 15, 457–467 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yajima, J. et al. The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J. 22, 1067–1074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tokai-Nishizumi, N., Ohsugi, M., Suzuki, E. & Yamamoto, T. The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol. Biol. Cell 16, 5455–5463 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vernos, I. et al. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81, 117–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Bringmann, H. et al. A kinesin-like motor inhibits microtubule dynamic instability. Science 303, 1519–1522 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Mazumdar, M., Sundareshan, S. & Misteli, T. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J. Cell Biol. 166, 613–620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Piehl, M. & Cassimeris, L. Organization and dynamics of growing microtubule plus ends during early mitosis. Mol. Biol. Cell 14, 916–925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rusan, N. M., Fagerstrom, C. J., Yvon, A. M. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-α tubulin. Mol. Biol. Cell 12, 971–980 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, Y., Heuser, J. E., Waterman, C. M. & Cleveland, D. W. CENPE combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J. Cell Biol. 181, 411–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McEwen, B. F. et al. CENPE is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2289–2776 (2001).

    Article  Google Scholar 

  104. Skibbens, R., Rieder, C. L. & Salmon, E. D. Kinetochore motility after severing between sister chromosomes using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J. Cell Sci. 108, 2537–2548 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).

    Article  CAS  PubMed  Google Scholar 

  106. Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gupta, M. L., Jr ., Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biol. 8, 913–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biol. 8, 957–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. DeLuca, J. G. et al. Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Joglekar, A. P. & Hunt, A. J. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J. 83, 42–58 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, J., Desai, A., Onuchic, J. N. & Hwa, T. An integrated mechanobiochemical feedback mechanism describes chromosome motility from prometaphase to anaphase in mitosis. Proc. Natl. Acad. Sci. USA 105, 13752–13757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A. & Scholey, J. M. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90, 3966–3982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mogilner, A., Wollman, R., Civelekoglu-Scholey, G. & Scholey, J. Modeling mitosis. Trends Cell Biol. 16, 88–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Wordeman, L., Wagenbach, M. & von Dassow, G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179, 789–869 (2007).

    Article  CAS  Google Scholar 

  115. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rizk, R. S. et al. MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol. Biol. Cell 20, 1639–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Khodjakov, A., Cole, R. W., McEwen, B. F., Buttle, K. F. & Rieder, C. L. Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol. 136, 229–240 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. O'Connell, C. B., Loncarek, J., Kalab, P. & Khodjakov, A. Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J. Cell Biol. 187, 43–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wise, D. A. & Brinkley, B. R. Mitosis in cells with unreplicated genomes (MUGs): spindle assembly and behavior of centromere fragments. Cell. Motil. Cytoskeleton 36, 291–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  122. Brust-Mascher, I. & Scholey, J. M. Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol. Biol. Cell 13, 3967–3975 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Desai, A., Maddox, P. S., Mitchison, T. J. & Salmon, E. D. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141, 703–713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maddox, P., Desai, A., Oegema, K., Mitchison, T. J. & Salmon, E. D. Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr. Biol. 12, 1670–1674 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Nicklas, R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol. 109, 2245–2255 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Vorozhko, V. V., Emanuele, M. J., Kallio, M. J., Stukenberg, P. T. & Gorbsky, G. J. Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117, 169–179 (2008).

    Article  PubMed  Google Scholar 

  130. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Buster, D. W., Zhang, D. & Sharp, D. J. Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol. Biol. Cell 18, 3094–3104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15, 1827–1832 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Gordon, M. B., Howard, L. & Compton, D. A. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J. Cell Biol. 152, 425–434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of their laboratories for insightful discussions on chromosome motility. In particular, we are grateful to L. Weaver and J. Powers for their comments on the manuscript. Our research is supported by funding from the National Institutes of Health (GM59618 to C.E.W and GM59363 to A.K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claire E. Walczak or Alexey Khodjakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Claire E. Walczak's homepage

Alexey Khodjakov's homepage

Mitosis world

MitoCheck

ASCB image and video library

Glossary

Centromere

A specialized thin region, often referred to as the 'primary constriction', on a chromosome. It is composed of highly condensed heterochromatin that serves as the platform for the assembly of kinetochores.

Kinetochore

A structure that assembles on the mitotic chromosome to attach to microtubules of the spindle.

K-fibre

A bundle of microtubules that connects to a kinetochore on a mitotic chromosome.

Segregation

The process by which sister chromatids are distributed to two daughter cells.

Spindle assembly checkpoint

A surveillance mechanism that monitors the attachment state of individual chromosomes. The checkpoint blocks anaphase onset until the kinetochores are attached to microtubules of the spindle.

Centrosome

A specialized organelle at the spindle pole that is the site of microtubule nucleation.

Congression

The process by which chromosomes align at the spindle equator.

Bi-oriented

Here, used to describe the attachment of a chromosome to microtubules emanating from opposite spindle poles.

Centromeric heterochromatin

Distinct regions of chromatin at the centromere of a chromosome that are highly condensed and contribute to specifying the location of kinetochore assembly.

Astral microtubule

A microtubule that emanates from the spindle pole to the cell cortex.

Mono-oriented

Here, used to describe the attachment of a chromosome to microtubules coming from a single spindle pole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walczak, C., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11, 91–102 (2010). https://doi.org/10.1038/nrm2832

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing