Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles and dynamics of spindle assembly checkpoint signalling

Abstract

The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetochore attachment states and SAC signalling.
Fig. 2: SAC proteins orchestrate the generation of MCCs to delay anaphase.
Fig. 3: Corona expansion and SAC silencing mechanisms.
Fig. 4: Disassembling the anaphase inhibitor.
Fig. 5: Mechanochemical model for SAC silencing.
Fig. 6: Different models to explain SAC silencing at ‘ensemble’ kinetochores.
Fig. 7: SAC signalling properties at kinetochores.

Similar content being viewed by others

References

  1. Cheeseman, I. M. The kinetochore. Cold Spring Harb. Perspect. Biol. 6, a015826 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McAinsh, A. D. & Marston, A. L. The four causes: the functional architecture of centromeres and kinetochores. Annu. Rev. Genet. 56, 279–314 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25, R1002–R1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lara-Gonzalez, P., Pines, J. & Desai, A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin. Cell Dev. Biol. 117, 86–98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. London, N. & Biggins, S. Signalling dynamics in the spindle checkpoint response. Nat. Rev. Mol. Cell Biol. 15, 736–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki, A., Badger, B. L. & Salmon, E. D. A quantitative description of Ndc80 complex linkage to human kinetochores. Nat. Commun. 6, 8161 (2015).

    Article  PubMed  Google Scholar 

  7. Kiewisz, R. et al. Three-dimensional structure of kinetochore-fibers in human mitotic spindles. eLife 11, e75459 (2022). This study is a technical feat of 3D spindle reconstructions by electron tomography giving a unique view of all microtubules in human mitotic spindles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rago, F. & Cheeseman, I. M. Review series: The functions and consequences of force at kinetochores. J. Cell Biol. 200, 557–565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12, 427–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Barford, D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Curr. Opin. Struct. Biol. 61, 86–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Sacristan, C. & Kops, G. J. P. L. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 25, 21–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka, T. U. Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 117, 521–533 (2008).

    Article  PubMed  Google Scholar 

  14. Collin, P., Nashchekina, O., Walker, R. & Pines, J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat. Cell Biol. 15, 1378–1385 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Dick, A. E. & Gerlich, D. W. Kinetic framework of spindle assembly checkpoint signalling. Nat. Cell Biol. 15, 1370–1377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kops, G. J. P. L., Weaver, B. A. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 5, 773–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, J. Sorting out chromosome errors. Science 296, 2164–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. McCoy, R. C. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet 33, 448–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vázquez-Diez, C., Paim, L. M. G. & FitzHarris, G. Cell-size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos. Curr. Biol. 29, 865–873.e3 (2019).

    Article  PubMed  Google Scholar 

  21. Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun. 13, 6755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoevenaar, W. H. M. et al. Degree and site of chromosomal instability define its oncogenic potential. Nat. Commun. 11, 1501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trakala, M. et al. Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes Dev. 35, 1079–1092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Foijer, F., Draviam, V. M. & Sorger, P. K. Studying chromosome instability in the mouse. Biochim. Biophys. Acta 1786, 73–82 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuijt, T. E. F. et al. A biosensor for the mitotic kinase MPS1 reveal spatiotemporal activity dynamics and regulation. Curr. Biol. 30, 3862–3870 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep. 2, 609–614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janssen, A., Kops, G. J. & Medema, R. H. Targeting the mitotic checkpoint to kill tumor cells. Horm. Cancer 2, 113–116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kops, G. J. P. L., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA 101, 8699–8704 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kops, G. J. P. L., Snel, B. & Tromer, E. C. Evolutionary dynamics of the spindle assembly checkpoint in eukaryotes. Curr. Biol. 30, R589–R602 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sudakin, V. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol. 148, 871–882 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alfieri, C. et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 536, 431–436 (2016). This study presents the atomic structure of APC/CMCC and gives unprecedented insight into how the APC/C is inhibited by the SAC and how APC15 can promote MCC disassembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Izawa, D. & Pines, J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517, 631–634 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Bravo, V. et al. Nuclear pores protect genome integrity by assembling a premitotic and Mad1-dependent anaphase inhibitor. Cell 156, 1017–1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pachis, S. T. & Kops, G. J. P. L. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol. 8, 180109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell Biol. 190, 89–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hiruma, Y. et al. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348, 1264–1267 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Ji, Z., Gao, H. & Yu, H. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348, 1260–1264 (2015). Together with Hiruma et al. (2015), this work illustrates the concept of mutually exclusive binding of MPS1 and microtubules to NDC80, providing a simple model for SAC silencing at kinetochores upon microtubule attachment.

    Article  CAS  PubMed  Google Scholar 

  43. Kemmler, S. et al. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 28, 1099–1110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gui, P. et al. Mps1 dimerization and multisite interactions with Ndc80 complex enable responsive spindle assembly checkpoint signaling. J. Mol. Cell Biol. 12, 486–498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. London, N., Ceto, S., Ranish, J. A. & Biggins, S. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22, 900–906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shepperd, L. A. et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 22, 891–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamagishi, Y., Yang, C.-H., Tanno, Y. & Watanabe, Y. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 14, 746–752 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Primorac, I. et al. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. eLife 2, e01030 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Di Fiore, B. et al. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev. Cell 32, 358–372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suijkerbuijk, S. J. E. et al. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev. Cell 22, 1321–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Tromer, E., Bade, D., Snel, B. & Kops, G. J. P. L. Phylogenomics-guided discovery of a novel conserved cassette of short linear motifs in BubR1 essential for the spindle checkpoint. Open Biol. 6, 160315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Overlack, K. et al. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. eLife 4, e05269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Di Fiore, B., Wurzenberger, C., Davey, N. & Pines, J. The mitotic checkpoint complex requires an evolutionary conserved cassette to bind and inhibit active APC/C. Mol. Cell 64, 1144–1153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lischetti, T., Zhang, G., Sedgwick, G. G., Bolanos-garcia, V. M. & Nilsson, J. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat. Commun. 5, 5563 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. King, E. M. J., van der Sar, S. J. A. & Hardwick, K. G. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2, e342 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Burton, J. L. & Solomon, M. J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21, 655–667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davenport, J., Harris, L. D. & Goorha, R. Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. Exp. Cell Res. 312, 1831–1842 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. London, N. & Biggins, S. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev. 28, 140–152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ji, Z., Gao, H., Jia, L., Li, B. & Yu, H. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 6, e22513 (2017). This study shows how a cascade of phosphorylation events by MPS1 ensures recruitment of all necessary factors for MCC assembly.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, G. et al. Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling. Nat. Commun. 8, 15822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klebig, C., Korinth, D. & Meraldi, P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 185, 841–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fischer, E. S. et al. Molecular mechanism of Mad1 kinetochore targeting by phosphorylated Bub1. EMBO Rep. 22, e52242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian, J. et al. An attachment-independent biochemical timer of the spindle assembly checkpoint. Mol. Cell 68, e5 (2017).

    Article  Google Scholar 

  64. Mapelli, M. & Musacchio, A. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol. 17, 716–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730–743 (2007). 

    Article  CAS  PubMed  Google Scholar 

  66. De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005).

    Article  PubMed  Google Scholar 

  67. Piano, V. et al. CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science 371, 67–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Lara-Gonzalez, P., Kim, T., Oegema, K., Corbett, K. & Desai, A. A tripartite mechanism catalyzes Mad2-Cdc20 assembly at unattached kinetochores. Science 67, 64–67 (2021).

    Article  Google Scholar 

  69. Fischer, E. S. et al. Juxtaposition of Bub1 and Cdc20 on phosphorylated Mad1 during catalytic mitotic checkpoint complex assembly. Nat. Commun. 13, 6381 (2022). Together with Piano et al. (2021) and Lara-Gonzalez et al. (2021), this work shows how the MCC assembly catalysts (MPS1, MAD1–MAD2 and BUB1) ensure the proper spatial organization of components to catalyse MCC formation. Furthermore, Piano et al. (2021) show that this reaction is assisted by the CDC20 substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Faesen, A. C. et al. Basis of catalytic assembly of the mitotic checkpoint complex. Nature 542, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Simonetta, M. et al. The influence of catalysis on Mad2 activation dynamics. PLoS Biol. 7, e10 (2009).

    Article  PubMed  Google Scholar 

  72. Kops, G. J. P. L. & Gassmann, R. Crowning the kinetochore: the fibrous corona in chromosome segregation. Trends Cell Biol. 30, 653–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Sacristan, C. et al. Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nat. Cell Biol. 20, 800–810 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pereira, C. et al. Self-assembly of the RZZ complex into filaments drives kinetochore expansion in the absence of microtubule attachment. Curr. Biol. 28, 3408–3421.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raisch, T. et al. Structure of the RZZ complex and molecular basis of Spindly-driven corona assembly at human kinetochores. EMBO J. 41, e110411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodriguez-Rodriguez, J. A. et al. Distinct roles of RZZ and Bub1-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Curr. Biol. 28, 3422–3429.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Silio, V., McAinsh, A. D. & Millar, J. B. KNL1-Bubs and RZZ provide two separable pathways for checkpoint activation at human kinetochores. Dev. Cell 35, 600–613 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Allan, L. A. et al. Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J. 39, e103180 (2020). This study reports a unique recruiting mechanism of MAD1 to the fibrous corona through interaction with cyclin B1, which increases SAC signalling strength.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jackman, M. et al. Cyclin B1–Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint. J. Cell Biol. 219, e201907082 (2020). This study shows that cyclin B promotes the SAC by ensuring MAD1 release from nuclear pore complexes and docking onto kinetochores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alfonso-Pérez, T., Hayward, D., Holder, J., Gruneberg, U. & Barr, F. A. MAD1-dependent recruitment of CDK1–CCNB1 to kinetochores promotes spindle checkpoint signaling. J. Cell Biol. 2018, 1108–1117 (2019). This study shows that cyclin B is recruited to kinetochores by interaction with MAD1, where it promotes a sustained SAC signal by enhancing recruitment of MPS1. Together with Allan et al. (2020) and Jackman et al. (2020), this paper shows a role for cyclin B in the SAC.

    Article  Google Scholar 

  81. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Bernard, P., Hardwick, K. & Javerzat, J. P. Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J. Cell Biol. 143, 1775–1787 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Currie, C. E., Mora-Santos, M., Smith, C. A., McAinsh, A. D. & Millar, J. B. A. Bub1 is not essential for the checkpoint response to unattached kinetochores in diploid human cells. Curr. Biol. 28, R929–R930 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Meraldi, P. Bub1—the zombie protein that CRISPR cannot kill. EMBO J. 38, e101912 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Raaijmakers, J. A. et al. BUB1 is essential for the viability of human cells in which the spindle assembly checkpoint is compromised. Cell Rep. 22, 1424–1438 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol. 10, 1411–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varetti, G., Guida, C., Santaguida, S., Chiroli, E. & Musacchio, A. Homeostatic control of mitotic arrest. Mol. Cell 44, 710–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Mansfeld, J., Collin, P., Collins, M. O., Choudhary, J. S. & Pines, J. APC15 drives the turnover of MCC–CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol. 13, 1234–1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Foster, S. A. & Morgan, D. O. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol. Cell 47, 921–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Uzunova, K. et al. APC15 mediates CDC20 autoubiquitylation by APC/CMCC and disassembly of the mitotic checkpoint complex. Nat. Struct. Mol. Biol. 19, 1116–1123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamaguchi, M. et al. Cryo-EM of mitotic checkpoint complex-bound APC/C reveals reciprocal and conformational regulation of ubiquitin ligation. Mol. Cell 63, 593–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gu, Y., Desai, A. & Corbett, K. D. Evolutionary dynamics and molecular mechanisms of HORMA domain protein signaling. Annu. Rev. Biochem. 91, 541–569 (2022).

    Article  PubMed  Google Scholar 

  93. Ye, Q. et al. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife 4, e07367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Habu, T., Kim, S. H., Weinstein, J. & Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21, 6419–6428 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eytan, E. et al. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet. Proc. Natl Acad. Sci. USA 111, 12019–12024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, H. T. & Poon, R. Y. C. TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint. Cell Rep. 14, 1086–1099 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Ma, H. T. & Poon, R. Y. C. TRIP13 functions in the establishment of the spindle assembly checkpoint by replenishing O-MAD2. Cell Rep. 22, 1439–1450 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Brulotte, M. L. et al. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat. Commun. 8, 1956 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim, D. H. et al. TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nat. Commun. 9, 4354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Westhorpe, F. G., Tighe, A., Lara-Gonzalez, P. & Taylor, S. S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J. Cell Sci. 124, 3905–3916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xia, G. et al. Conformation-specific binding of p31comet antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23, 3133–3143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mapelli, M. et al. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J. 25, 1273–1284 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, M. et al. p31comet blocks Mad2 activation through structural mimicry. Cell 131, 744–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, K. et al. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J. Biol. Chem. 289, 23928–23937 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alfieri, C., Chang, L. & Barford, D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 559, 274–278 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nelson, C. R., Hwang, T., Chen, P.-H. & Bhalla, N. TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J. Cell Biol. 211, 503–516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaisari, S. et al. Role of Polo-like kinase 1 in the regulation of the action of p31comet in the disassembly of mitotic checkpoint complexes. Proc. Natl Acad. Sci. USA 116, 11725–11730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Date, D. A., Burrows, A. C. & Summers, M. K. Phosphorylation regulates the p31Comet-mitotic arrest-deficient 2 (Mad2) interaction to promote spindle assembly checkpoint (SAC) activity. J. Biol. Chem. 289, 11367–11373 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ciliberto, A. & Shah, J. V. A quantitative systems view of the spindle assembly checkpoint. EMBO J. 28, 2162–2173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aravamudhan, P., Goldfarb, A. A. & Joglekar, A. P. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat. Cell Biol. 17, 868–879 (2015). This study based on budding yeast illustrates how positioning of Mps1 activity relative to its key SAC substrate Knl1 (Spc105 in yeast) can activate or silence the SAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hayward, D. et al. Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56. J. Cell Biol. 218, 3188–3199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pinsky, B. A., Nelson, C. R. & Biggins, S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr. Biol. 19, 1182–1187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vanoosthuyse, V. & Hardwick, K. G. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr. Biol. 19, 1–6 (2009).

    Article  Google Scholar 

  115. Espert, A. et al. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J. Cell Biol. 206, 833–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nijenhuis, W., Vallardi, G., Teixeira, A., Kops, G. J. P. L. & Saurin, A. T. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat. Cell Biol. 16, 1257–1264 (2014). This paper illustrates a phosphatase feedback at kinetochores that primes the SAC for rapid activation upon detachment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rosenberg, J. S., Cross, F. R. & Funabiki, H. KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr. Biol. 21, 942–947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Moura, M. et al. Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing. eLife 6, e25366 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cordeiro, M. H., Smith, R. J. & Saurin, A. T. Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. J. Cell Biol. 219, e202002020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. von Schubert, C. et al. Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep. 12, 66–78 (2015).

    Article  Google Scholar 

  121. Ikeda, M. & Tanaka, K. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci. Rep. 7, 8794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Espeut, J. et al. Natural loss of Mps1 kinase in nematodes uncovers a role for polo-like kinase 1 in spindle checkpoint initiation. Cell Rep. 12, 58–65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gelens, L., Qian, J., Bollen, M. & Saurin, A. T. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol. 28, 6–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Howell, B. J. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Griffis, E. R., Stuurman, N. & Vale, R. D. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177, 1005–1015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wojcik, E. et al. Kinetochore dynein: Its dynamics and role in the transport of the Rough deal checkpoint protein. Nat. Cell Biol. 3, 1001–1007 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Kops, G. J. P. L. & Shah, J. V. Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma 121, 509–525 (2012).

    Article  PubMed  Google Scholar 

  129. O’Connell, C. B. et al. The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes. J. Cell Biol. 183, 29–36 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Drpic, D., Pereira, A. J., Barisic, M., Maresca, T. J. & Maiato, H. Polar ejection forces promote the conversion from lateral to end-on kinetochore-microtubule attachments on mono-oriented chromosomes. Cell Rep. 13, 460–468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dudka, D. et al. Complete microtubule-kinetochore occupancy favours the segregation of merotelic attachments. Nat. Commun. 9, 2042 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Etemad, B., Kuijt, T. E. F. & Kops, G. J. P. L. Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat. Commun. 6, 8987 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Tauchman, E. C., Boehm, F. J. & DeLuca, J. G. Stable kinetochore–microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells. Nat. Commun. 6, 10036 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Kuhn, J. & Dumont, S. Spindle assembly checkpoint satisfaction occurs via end-on but not lateral attachments under tension. J. Cell Biol. 216, 1533–1542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Magidson, V. et al. Unattached kinetochores rather than intrakinetochore tension arrest mitosis in Taxol-treated cells. J. Cell Biol. 212, 307–319 (2016). Together with Etemad et al. (2015), Tauchman et al. (2015) and Kuhn and Dumont (2017), this work shows that in human cells the SAC is silenced by microtubule attachment to kinetochores rather than tension between or within kinetochores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Roscioli, E. et al. Ensemble-level organization of human kinetochores and evidence for distinct tension and attachment sensors. Cell Rep. 31, 107535 (2020). This study reports on distinct rearrangements within the ensemble-level 3D organization of human kinetochores upon the loss of attachment or tension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Burroughs, N. J., Harry, E. F. & McAinsh, A. D. Super-resolution kinetochore tracking reveals the mechanisms of human sister kinetochore directional switching. eLife 4, e09500 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wan, X., Cimini, D., Cameron, L. A. & Salmon, E. D. The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells. Mol. Biol. Cell 23, 1035–1046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hayward, D., Roberts, E. & Gruneberg, U. MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release. Curr. Biol. 32, 5200–5208.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uchida, K. S. K. et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184, 383–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Uchida, K. S. K. et al. Kinetochore stretching-mediated rapid silencing of the spindle-assembly checkpoint required for failsafe chromo. Curr. Biol. 31, 1581–1591 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Conway, W. et al. Self-organization of kinetochore-fibers in human mitotic spindles. eLife 11, e75458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Drpic, D. et al. Chromosome segregation is biased by kinetochore size. Curr. Biol. 28, 1344–1356.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Comings, D. E. & Okada, T. A. Fine structure of kinetochore in Indian muntjac. Exp. Cell Res. 67, 97–110 (1971).

    Article  CAS  PubMed  Google Scholar 

  148. Senaratne, A. P., Cortes-Silva, N. & Drinnenberg, I. A. Evolution of holocentric chromosomes: drivers, diversity, and deterrents. Semin. Cell Dev. Biol. 127, 90–99 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Kukreja, A. A., Kavuri, S. & Joglekar, A. P. Microtubule attachment and centromeric tension shape the protein architecture of the human kinetochore. Curr. Biol. 30, 4869–4881.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Etemad, B. et al. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. J. Cell Sci. 132, jcs231589 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Kuhn, J. & Dumont, S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. J. Cell Biol. 218, 3583–3596 (2019). Together with Dudka et al. (2018) and Etemad et al. (2019), this work shows that SAC signalling can fully switch off at human kinetochores that have not yet bound a full complement of microtubules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zaytsev, A. V., Sundin, L. J. R., DeLuca, K. F., Grishchuk, E. L. & DeLuca, J. G. Accurate phosphoregulation of kinetochore–microtubule affinity requires unconstrained molecular interactions. J. Cell Biol. 206, 45–59 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Joglekar, A. P. et al. Molecular architecture of the kinetochore–microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore–microtubule attachment site. Nat. Cell Biol. 8, 581–585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhao, W. & Jensen, G. J. In situ architecture of human kinetochore-microtubule interface visualized by cryo-electron tomography. Preprint at bioRxiv https://doi.org/10.1101/2022.02.17.480955 (2022).

  156. Etemad, B. & Kops, G. J. Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr. Opin. Cell Biol. 39, 101–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Yoo, T. Y. et al. Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments. eLife 7, e36392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Renda, F. et al. Effects of malleable kinetochore morphology on measurements of intrakinetochore tension. Open Biol. 10, 200101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sacristan, C. et al. Condensin reorganizes centromeric chromatin during mitotic entry into a bipartite structure stabilized by cohesin. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502248 (2022).

  160. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  161. Vleugel, M. et al. Sequential multisite phospho-regulation of KNL1–BUB3 interfaces at mitotic kinetochores. Mol. Cell 57, 824–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, C. et al. Ectopic activation of the spindle assembly checkpoint signaling cascade reveals its biochemical design. Curr. Biol. 29, 104–119.e10 (2019). This study shows signalling principles of an elegant ectopic SAC system to suggest that the signal output per kinetochore and the number of signalling kinetochores has an inverse, non-linear relationship, enabling the SAC to approximate switch-like behaviour.

    Article  CAS  PubMed  Google Scholar 

  163. Vleugel, M. et al. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J. Cell Biol. 203, 943–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, G., Lischetti, T. & Nilsson, J. A minimal number of MELT repeats supports all the functions of KNL1 in chromosome segregation. J. Cell Sci. 127, 871–884 (2014).

    CAS  PubMed  Google Scholar 

  165. Suijkerbuijk, S. J. E., Vleugel, M., Teixeira, A. & Kops, G. J. P. L. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev. Cell 23, 745–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Kruse, T. et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J. Cell Sci. 126, 1086–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Roy, B., Han, S. J. Y., Fontan, A. N. & Joglekar, A. P. The copy-number and varied strengths of melt motifs in spc105 balance the strength and responsiveness of the spindle assembly checkpoint. eLife 9, e55096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Corno, A. et al. A bifunctional kinase-phosphatase module integrates mitotic checkpoint and error-correction signalling to ensure mitotic fidelity. Preprint at bioRxiv https://doi.org/10.1101/2022.05.22.492960 (2022).

  169. Heinrich, S. et al. Determinants of robustness in spindle assembly checkpoint signalling. Nat. Cell Biol. 15, 1328–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Galli, M. & Morgan, D. O. Cell size determines the strength of the spindle assembly checkpoint during embryonic development. Dev. Cell 36, 344–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  172. Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W. C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 13, 789–803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ciferri, C. et al. Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Saurin, A. T., van der Waal, M. S., Medema, R. H., Lens, S. M. A. & Kops, G. J. P. L. Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat. Commun. 2, 316 (2011).

    Article  PubMed  Google Scholar 

  178. Pachis, S. T., Hiruma, Y., Perrakis, A. & Kops, G. J. P. L. Interactions between N-terminal modules in MPS1 enable spindle checkpoint silencing. Cell Rep. 26, 2101–2112 (2018).

    Article  Google Scholar 

  179. Nijenhuis, W. et al. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. J. Cell Biol. 201, 217–231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Santaguida, S., Vernieri, C., Villa, F., Ciliberto, A. & Musacchio, A. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J. 30, 1508–1519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roy, B., Han, S. J. Y., Fontan, A. N., Jema, S. & Joglekar, A. P. Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Curr. Biol. 32, 237–247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hindriksen, S., Lens, S. M. A. & Hadders, M. A. The ins and outs of Aurora B inner centromere localization. Front. Cell Dev. Biol. 5, 112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hengeveld, R. C. C., Vromans, M. J. M., Vleugel, M., Hadders, M. A. & Lens, S. M. A. Inner centromere localization of the CPC maintains centromere cohesion and allows mitotic checkpoint silencing. Nat. Commun. 8, 15542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Broad, A. J., DeLuca, K. F. & DeLuca, J. G. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J. Cell Biol. 219, e201905144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Biggins and J. Millar for comments on the manuscript, C. Conway for helping devise Fig. 7a  and the three reviewers for their thorough and constructive feedback. A.D.M. is supported by a Wellcome collaborator award (215625) and the Biotechnology and Biological Sciences Research Council (BB/R009503/1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrew D. McAinsh or Geert J. P. L. Kops.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks David Barford, who co-reviewed with Elyse Fischer, Ajit Joglekar, who co-reviewed with Dana Beseiso, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

AAA+ ATPase

A class of protein enzymes that use ATP hydrolysis for remodelling or translocating macromolecules.

Aneuploidy

The state where a cell of a given species has numerous chromosomes that deviates from a multiple of the haploid set of that species.

Centromeric chromatin

Specialized chromatin at centromeres that define the site of kinetochore assembly, in which a subset of nucleosomes contains the histone H3 variant centromere protein A (CENP-A).

Chromosome bi-orientation

The configuration of a duplicated chromosome on a bipolar spindle in mitosis in which the kinetochore of one sister chromatid is attached to one pole whereas the kinetochore of the other sister chromatid is attached to the other pole.

Chromosomal passenger complex

(CPC). A tetrameric protein complex containing the Aurora B kinase that locates to and functions at various locations in mitotic cells, regulating sister chromatid cohesion, attachment error correction, spindle checkpoint signalling and cytokinesis.

Degron

A short linear amino acid sequence motif that is recognized by the cellular protein degradation machinery for targeting the host protein for degradation.

End-on interactions

Interactions of kinetochore proteins with microtubules near their plus ends, resulting in plus-end embedding into kinetochores and subsequent ability of plus-end depolymerization to exert pulling force on the chromosome.

Holocentric chromosomes

Chromosomes, natural to certain species, that contain microtubule-binding kinetochores along their entire length rather than at a single defined location (that is, the centromere).

Interphase

The phase between two mitosis events, encompassing the cell cycle phases G0, G1, S and G2.

Kinetochore fibres

Bundles of microtubules that together connect to a single kinetochore.

NDC80 complex

A tetrameric protein complex assembled from SPC24, SPC25, NUF2 and NDC80 (also known as HEC1), of which the latter two components directly bind to microtubules.

Nuclear envelope breakdown

The process of disassembling the nuclear envelope at the start of mitosis in order to enable access of chromosomes to cytoplasmic microtubules.

Paralogues

Pairs of homologous genes that have diverged in sequence following gene duplication during evolution.

Spindle poles

The regions of the spindle where the minus ends of microtubules come together. In human somatic cells, the centrosomes form the two spindle poles.

Taxol

Brand name of paclitaxel, a cytostatic anticancer drug that inhibits microtubule depolymerization, originally made from extract of the Taxus brevifolia tree.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAinsh, A.D., Kops, G.J.P.L. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 24, 543–559 (2023). https://doi.org/10.1038/s41580-023-00593-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00593-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing