Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

The past 10 years of gastroenterology and hepatology—reflections and predictions

Abstract

In November 2004, the very first issue of this journal featured articles on the pathogenesis of ulcerative colitis, mechanisms leading to chronic pancreatitis, and treatment of recurrent Clostridium-difficile-associated diarrhoea. Although those topics might seem familiar, much has changed in the intervening years in our understanding, diagnosis and treatment of many different diseases across the field of gastroenterology and hepatology. Nonetheless, many challenges remain. Here, we have asked five of our Advisory Board members—international experts across different subspecialties in gastroenterology and hepatology—to reflect on the progress and frustrations of the past 10 years. They also comment on where effort and money should be invested now, as well as their predictions for progress in the next 10 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pawlotsky, J. M. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 146, 1176–1192 (2014).

    Article  CAS  Google Scholar 

  2. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  Google Scholar 

  3. D'Ambrosio, R. et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 56, 532–543 (2012).

    Article  Google Scholar 

  4. Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381, 468–475 (2013).

    Article  CAS  Google Scholar 

  5. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  Google Scholar 

  6. Vluggens, A. & Reddy, J. K. Nuclear receptors and transcription factors in the development of fatty liver disease. Curr. Drug Metab. 13, 1422–1435 (2012).

    Article  CAS  Google Scholar 

  7. Takahashi, K., Yan, I., Wen, H. J. & Patel, T. MicroRNAs in liver disease: from diagnostics to therapeutics. Clin. Biochem. 46, 946–952 (2013).

    Article  CAS  Google Scholar 

  8. Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin.Cell Dev. Biol. 23, 450–457 (2012).

    Article  CAS  Google Scholar 

  9. Fraher, M. H., O'Toole, P. W. & Quigley, E. M. M. Techniques used to characterise the intestinal microbiota: a guide for the clinician. Nat. Rev. Gastroenterol. Hepatol. 9, 312–322 (2012).

    Article  CAS  Google Scholar 

  10. Nicholson, J. K. et al. Host–gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  Google Scholar 

  11. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  Google Scholar 

  12. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  Google Scholar 

  13. Pawlotsky, J. M. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 146, 1176–1192 (2014).

    Article  CAS  Google Scholar 

  14. Trépo, C., Chan, H. L. & Lok, A. Hepatitis B virus infection. Lancet http://dx.doi.org/10.1016/S0140-6736(14)60220-8.

  15. Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    Article  CAS  Google Scholar 

  16. Bravo, J. A. et al. Communication between gastrointestinal bacteria and the nervous system. Curr. Opin. Pharmacol. 12, 667–672 (2012).

    Article  CAS  Google Scholar 

  17. De Palma, G., Collins, S. M., Bercik, P. & Verdu, E. F. The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J. Physiol. 592, 2989–2997 (2014).

    Article  CAS  Google Scholar 

  18. Farmer, A. D., Randall, H. A. & Aziz, Q. It's a gut feeling: how the gut microbiota affects the state of mind. J. Physiol. 592, 2981–2988 (2014).

    Article  CAS  Google Scholar 

  19. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    Article  CAS  Google Scholar 

  20. Dockray, G. J. Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol. 592, 2927–2941 (2014).

    Article  CAS  Google Scholar 

  21. Coates, M. D. et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126, 1657–1664 (2004).

    Article  CAS  Google Scholar 

  22. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    Article  CAS  Google Scholar 

  23. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Article  Google Scholar 

  24. Labus, J. S. et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155, 137–149 (2014).

    Article  Google Scholar 

  25. Castro, J. et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′, 5′-monophosphate. Gastroenterology 145, 1334–1346 (2013).

    Article  CAS  Google Scholar 

  26. Manabe, N., Wong, B. S. & Camilleri, M. New-generation 5-HT4 receptor agonists: potential for treatment of gastrointestinal motility disorders. Expert Opin. Investig. Drugs 19, 765–775 (2010).

    Article  CAS  Google Scholar 

  27. Kurahashi, M. et al. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J. Physiol. 589, 697–710 (2011).

    Article  CAS  Google Scholar 

  28. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    Article  CAS  Google Scholar 

  29. Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2013).

    Article  Google Scholar 

  30. Costantini, T. W. et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1308–G1318 (2010).

    Article  CAS  Google Scholar 

  31. Nishiyama, C. et al. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat. Neurosci. 15, 1211–1218 (2012).

    Article  CAS  Google Scholar 

  32. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  CAS  Google Scholar 

  33. Won, K. J., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc. Natl Acad. Sci. USA 102, 14913–14918 (2005).

    Article  CAS  Google Scholar 

  34. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011).

    Article  CAS  Google Scholar 

  35. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  Google Scholar 

  36. Bischoff, S. C. et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G685–G695 (2009).

    Article  CAS  Google Scholar 

  37. Ghia, J. E. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137, 1649–1660 (2009).

    Article  CAS  Google Scholar 

  38. Ellis, M., Chambers, J. D., Gwynne, R. M. & Bornstein, J. C. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G749–G761 (2013).

    Article  CAS  Google Scholar 

  39. Huizinga, J. D. et al. The origin of segmentation motor activity in the intestine. Nat. Commun. 5, 3326 (2014).

    Article  Google Scholar 

  40. Khoruts, A. et al. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  41. Manichanh, C. et al. Reduced diversity of fecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  CAS  Google Scholar 

  42. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer patients. PLoS ONE 6, e16393 (2011).

    Article  CAS  Google Scholar 

  43. Lee, K. et al. Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 493–498 (2010).

    Article  CAS  Google Scholar 

  44. Kohli, A. et al. Treatment of Hepatitis C. A systematic review. JAMA 312, 631–640 (2014).

    Article  CAS  Google Scholar 

  45. Lawitz, E. et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013).

    Article  CAS  Google Scholar 

  46. Poordad, F. et al. ABT-450/r-ombitasvir and dasabuvir with ribavirin for hepatitis C with cirrhosis. N. Engl. J. Med. 370, 1973–1982 (2014).

    Article  Google Scholar 

  47. Kabiri, M., Jazwinski, A. B., Roberts, M. S., Schaefer, A. J. & Chhatwal, J. The changing burden of hepatitis C virus infection in the United States: model-based predictions. Ann. Intern. Med. 161, 170–180 (2014).

    Article  Google Scholar 

  48. Shaheen, N. J. et al. Radiofrequency ablation in Barrett's esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009).

    Article  CAS  Google Scholar 

  49. Pech, O. et al. Long-term efficacy and safety of endoscopic resection for patients with mucosal adenocarcinoma of the esophagus. Gastroenterology 146, 652–660 (2014).

    Article  Google Scholar 

  50. Regueiro, M. et al. Infliximab prevents Crohn's disease recurrence after ileal resection. Gastroenterology 136, 441–450 (2009).

    Article  CAS  Google Scholar 

  51. Schoen, R. E. et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N. Engl. J. Med. 366, 2345–2357 (2012).

    Article  CAS  Google Scholar 

  52. Fink, S. P. et al. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci. Transl. Med. 6, 233re2 (2014).

    Article  Google Scholar 

  53. Rosendahl, J. et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat. Genet. 40, 78–82 (2008).

    Article  CAS  Google Scholar 

  54. Whitcomb, D. C. et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat. Genet. 44, 1349–1354 (2012).

    Article  CAS  Google Scholar 

  55. Witt, H. et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat. Genet. 45, 1216–1220 (2013).

    Article  CAS  Google Scholar 

  56. LaRusch, J. et al. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 10, e1004376 (2014).

    Article  Google Scholar 

  57. Talamini, G. et al. Smoking cessation at the clinical onset of chronic pancreatitis and risk of pancreatic calcifications. Pancreas 35, 320–326 (2007).

    Article  Google Scholar 

  58. Yadav, D. et al. Alcohol consumption, cigarette smoking, and the risk of recurrent acute and chronic pancreatitis. Arch. Intern. Med. 169, 1035–1045 (2009).

    Article  Google Scholar 

  59. Kisseleva, T., Gigante, E. & Brenner, D. A. Recent advances in liver stem cell therapy. Curr. Opin. Gastroenterol. 26, 395–402 (2010).

    Article  Google Scholar 

  60. SFI Research Impact. Science Foundation Ireland [online], (2014).

  61. Alimentary Pharmabiotic Centre[online], (2014).

  62. Edwards, B. K. et al. Annual Report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120, 1290–1314 (2014).

    Article  Google Scholar 

  63. Festen, E. A. & Weersma, R. K. How will insights from genetics translate to clinical practice in inflammatory bowel disease? Best Pract. Res. Clin. Gastroenterol. 28, 387–397 (2014).

    Article  CAS  Google Scholar 

  64. Bharucha, A. E. et al. American Gastroenterological Association technical review on constipation. Gastroenterology 144, 218–238 (2013).

    Article  Google Scholar 

  65. Brandt, L. J. et al. American College of Gastroenterology Task Force on Irritable Bowel Syndrome: an evidence based position statement on the management of irritable bowel syndrome. Am. J. Gastroenterol. 104 (Suppl. 1), S1–S35 (2009).

    PubMed  Google Scholar 

  66. Hazewinkel, Y. et al. Narrow-band imaging for the detection of polyps in patients with serrated polyposis syndrome: a multicenter, randomized, back-to-back trial. Gastrointest. Endosc. http://dx.doi.org/10.1016/j.gie.2014.06.043.

  67. Omata, F. et al. Image-enhanced, chromo, and cap-assisted colonoscopy for improving adenoma/neoplasia detection rate: a systematic review and meta-analysis. Scand. J. Gastroenterol. 49, 222–237 (2014).

    Article  Google Scholar 

  68. Dunbar, K. B. et al. Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective randomized double-blind controlled crossover trial. Gastrointest. Endosc. 70, 645–654 (2009).

    Article  Google Scholar 

  69. Kiesslich, R. et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132, 874–882 (2007).

    Article  Google Scholar 

  70. Pasha, S. F. et al. Double-balloon enteroscopy and capsule endoscopy have comparable diagnostic yield in small-bowel disease: a meta-analysis. Clin. Gastroenterol. Hepatol. 6, 671–676 (2008).

    Article  Google Scholar 

  71. Spada, C. et al. Second-generation colon capsule endoscopy compared with colonoscopy. Gastrointest. Endosc. 74, 581–589 (2011).

    Article  Google Scholar 

  72. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. U.S. Food and Drug Administration [online], (2004).

  73. Barbosa, M. D. & Smith, D. D. Channeling postmarketing patient data into pharmaceutical regulatory systems. Drug Discov. Today http://dx.doi.org/10.1016/j.drudis.2014.07.011.

  74. Moore, T. J. & Furberg, C. D. Development times, clinical testing, postmarket follow-up, and safety risks for the new drugs approved by the US food and drug administration: the class of 2008. JAMA Intern. Med. 174, 90–95 (2014).

    Article  Google Scholar 

  75. Sacks, L. V. et al. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000–2012. JAMA 311, 378–384 (2014).

    Article  CAS  Google Scholar 

  76. Heemstra, H. E. et al. Characteristics of orphan drug applications that fail to achieve marketing approval in the USA. Drug Discov. Today 16, 73–80 (2011).

    Article  Google Scholar 

  77. Juran, B. D. & Lazaridis, K. N. Genomics in the post-GWAS era. Semin. Liver Dis. 31, 215–222 (2011).

    Article  Google Scholar 

  78. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  Google Scholar 

  79. Cho, I. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  CAS  Google Scholar 

  80. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  Google Scholar 

  81. Parks, B. W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell. Metab. 17, 141–152 (2013).

    Article  CAS  Google Scholar 

  82. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  Google Scholar 

  83. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–178 (2012).

    Article  CAS  Google Scholar 

  84. Malfertheiner, P., Link, A. & Selgrad, M. Helicobacter pylori: perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol. http://dx.doi.org/10.1038/nrgastro.2014.99.

  85. Brenner, H., Stock, C. & Hoffmeister, M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ 348, 2467 (2014).

    Article  Google Scholar 

  86. de Jonge, P. J., van Blankenstein, M., Grady, W. M. & Kuipers, E. J. Barrett's oesophagus: epidemiology, cancer risk and implications for management. Gut 63, 191–202 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

S.L.F. performs laboratory studies supported by NIH grants DK56621 and AA020709. K.A.S. thanks G. Mawe, University of Vermont, USA, for his insightful comments and many helpful suggestions. K.A.S. holds the Crohn's & Colitis Foundation of Canada Chair in Inflammatory Bowel Disease Research. Owing to space limitations, only selected references were cited. J.J.Y.S. holds the Grants from the State Key Laboratory of People's Republic of China and Research Grant Committee of the Hong Kong SAR Government. D.C.W. thanks M. Kienholz, D. Yadav, and D. Conwell for critical review of the manuscript. D.C.W.'s research is supported by the NIH, the Department of Defense, the National Pancreas Foundation, and the Wayne Fusaro Pancreatic Cancer Research Fund, and an educational grant from AbbVie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott L. Friedman, Eamonn M. M. Quigley, Keith A. Sharkey, Joseph J. Y. Sung or David C. Whitcomb.

Ethics declarations

Competing interests

S.L.F. acts as a consultant and has equity interests in Genfit and Intercept Pharmaceuticals. D.C.W. acts as a consultant for AbbVie, Millennium and Novartis and has equity in Ambry Genetics and SMART-MD. E.M.M.Q., K.A.S. and J.J.Y.S. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, S., Quigley, E., Sharkey, K. et al. The past 10 years of gastroenterology and hepatology—reflections and predictions. Nat Rev Gastroenterol Hepatol 11, 692–700 (2014). https://doi.org/10.1038/nrgastro.2014.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.167

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing