Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parathyroid hormone analogues in the treatment of osteoporosis

Abstract

Osteoporosis is characterized by the occurrence of fragility fractures. Over the past years, various treatment options have become available, mostly antiresorptive agents such as bisphosphonates. However, antiresorptive therapy cannot restore bone mass and structure that has been lost due to increased remodeling. In this case, recombinant human parathyroid hormone (PTH) analogues—the full-length PTH1–84 or the shortened molecule PTH1–34, which is also known as teriparatide—present the possibility of increasing the formation of new bone substance by virtue of their anabolic effects. The bone formation induced by PTH analogues not only increases BMD or bone mass but also improves the microarchitecture of the skeleton, thereby leading to improved strength of bone and increased mechanical resistance. Controlled trials have shown that both analogues significantly reduce the incidence of vertebral fractures, and PTH1–34 also reduces the risk of nonvertebral fractures. The need for daily self-injection and the higher cost compared with other forms of treatment limit the widespread use of PTH analogues. Nevertheless, treatment with PTH analogues should be considered in postmenopausal women and men with severe osteoporosis, as well as in patients on established glucocorticoid treatment with a high fracture risk. Concurrent therapy with antiresorptive agents should be avoided, but sequential therapy with these agents might consolidate the beneficial effects on the skeleton.

Key Points

  • Osteoporosis is characterized by a decrease in bone mass and alterations in bone architecture that increase bone fragility and risk of fracture

  • Agents that reduce bone resorption are primarily used today in the treatment of osteoporosis; however, they cannot restore bone mass and structure that has been lost due to increased bone remodeling

  • Therapy with recombinant human PTH analogues, such as PTH1–34 (teriparatide) and PTH1–84 (full-length PTH), can increase the formation of new bone substance

  • PTH analogues not only increase BMD or bone mass but also improve the microarchitecture of the skeleton, thereby improving bone strength as well as mechanical resistance

  • PTH analogues significantly reduce the incidence of vertebral fracture, whereas PTH1–34 also reduces the risk of nonvertebral fractures

  • Treatment with PTH analogues should be considered in postmenopausal women and men with severe osteoporosis, as well as in patients on established glucocorticoid treatment with a high risk of fractures

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the mechanism of action of PTH on osteoblasts.
Figure 2: Schematic representation of the action of intermittent PTH on cells of the osteoblast lineage and on bone formation.
Figure 3: The anabolic window.
Figure 4: Effect of PTH1–34 on vertebral fracture risk.
Figure 5: Effect of PTH1–84 on vertebral fracture risk.

Similar content being viewed by others

References

  1. Raisz, L. G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, P. D. & Derman, R. J. What is the best balance of benefits and risks among anti-resorptive therapies for postmenopausal osteoporosis? Osteoporos. Int. 21, 1793–1802 (2010).

    CAS  PubMed  Google Scholar 

  3. Reginster, J. Y. Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 71, 65–78 (2011).

    CAS  PubMed  Google Scholar 

  4. Canalis, E., Giustina, A. & Bilezikian, J. P. Mechanisms of anabolic therapies for osteoporosis. N. Engl. J. Med. 357, 905–916 (2007).

    CAS  PubMed  Google Scholar 

  5. Frolik, C. A. et al. Anabolic and catabolic bone effects of human parathyroid hormone (1–34) are predicted by duration of hormone exposure. Bone 33, 372–379 (2003).

    CAS  PubMed  Google Scholar 

  6. Kousteni, S. & Bilezikian, J. P. The cell biology of parathyroid hormone in osteoblasts. Curr. Osteoporos. Rep. 6, 72–76 (2008).

    PubMed  Google Scholar 

  7. Bauer, W., Aub, J. C. & Albright, F. Studies of calcium and phosphorus metablism: V. A study of the bone trabeculae as readily available reserve supply of calcium. J. Exp. Med. 49, 145–162 (1929).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reeve, J. et al. Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet 1, 1035–1038 (1976).

    CAS  PubMed  Google Scholar 

  9. Reeve, J., Tregear, G. W. & Parsons, J. A. Preliminary trial of low doses of human parathyroid hormone 1–34 peptide in treatment of osteoporosis. Calcif. Tissue Res. 21 (Suppl.), 469–477 (1976).

    PubMed  Google Scholar 

  10. Reeve, J. et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br. Med. J. 280, 1340–1344 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Habener, J. F., Rosenblatt, M. & Potts, J. T. Jr. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol. Rev. 64, 985–1053 (1984).

    CAS  PubMed  Google Scholar 

  12. Mosekilde, L., Søgaard, C. H., Danielsen, C. C., Tørring, O. & Nilsson, M. H. The anabolic effects of human parathyroid hormone (hPTH) on rat vertebral body mass are also reflected in the quality of bone, assessed by biomechanical testing: a comparison study between hPTH-(1–34) and hPTH-(1–84). Endocrinology 129, 421–428 (1991).

    CAS  PubMed  Google Scholar 

  13. Yang, D., Guo, J., Divieti, P. & Bringhurst, F. R. Parathyroid hormone activates PKC-delta and regulates osteoblastic differentiation via a PLC-independent pathway. Bone 38, 485–496 (2006).

    CAS  PubMed  Google Scholar 

  14. Silver, J. & Bushinsky, D. Harnessing the parathyroids to create stronger bones. Curr. Opin. Nephrol. Hypertens. 13, 471–476 (2004).

    CAS  PubMed  Google Scholar 

  15. Swarthout, J. T., D'Alonzo, R. C., Selvamurugan, N. & Partridge, N. C. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282, 1–17 (2002).

    CAS  PubMed  Google Scholar 

  16. Jilka, R. L., O'Brien, C. A., Bartell, S. M., Weinstein, R. S. & Manolagas, S. C. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J. Bone Miner. Res. 25, 2427–2437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gatti, D. et al. The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J. Clin. Endocrinol. Metab. 96, 1555–1559 (2011).

    CAS  PubMed  Google Scholar 

  18. Anastasilakis, A. D. et al. The effect of teriparatide on serum Dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin. Endocrinol. (Oxf.) 72, 752–757 (2010).

    CAS  Google Scholar 

  19. Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 11, 219–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Martin, T. J. & Sims, N. A. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol. Med. 11, 76–81 (2005).

    CAS  PubMed  Google Scholar 

  21. Martin, T. J. et al. Mechanisms involved in skeletal anabolic therapies. Ann. NY Acad. Sci. 1068, 458–470 (2006).

    CAS  PubMed  Google Scholar 

  22. Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  23. Finkelstein, J. S. et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 349, 1216–1226 (2003).

    CAS  PubMed  Google Scholar 

  24. Finkelstein, J. S., Wyland, J. J., Lee, H. & Neer, R. M. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 95, 1838–1845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dobnig, H. & Turner, R. T. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136, 3632–3638 (1995).

    CAS  PubMed  Google Scholar 

  26. Gasser, J., Ingold, P., Venturiere, A. & Green, J. Chronic subcutaneous, but not single intravenous dosing of rats with bisphosponates resuts in reduced bone anabolic response to PTH. J. Bone Miner. Res. 21 (Suppl. 1), S113 (2006).

    Google Scholar 

  27. Cosman, F. et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 503–511 (2011).

    CAS  PubMed  Google Scholar 

  28. File, E. & Deal, C. Clinical update on teriparatide. Curr. Rheumatol. Rep. 11, 169–176 (2009).

    CAS  PubMed  Google Scholar 

  29. Lindsay, R. et al. Randomised controlled study of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on estrogen with osteoporosis. Lancet 350, 550–555 (1997).

    CAS  PubMed  Google Scholar 

  30. Deal, C. et al. Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J. Bone Miner. Res. 20, 1905–1911 (2005).

    CAS  PubMed  Google Scholar 

  31. Hodsman, A. B., Steer, B. M., Fraher, L. J. & Drost, D. J. Bone densitometric and histomorphometric responses to sequential human parathyroid hormone (1–38) and salmon calcitonin in osteoporotic patients. Bone Miner. 14, 67–83 (1991).

    CAS  PubMed  Google Scholar 

  32. Dempster, D. W. et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 16, 1846–1853 (2001).

    CAS  PubMed  Google Scholar 

  33. Lindsay, R. et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J. Bone Miner. Res. 21, 366–373 (2006).

    CAS  PubMed  Google Scholar 

  34. Rubin, M. R. & Bilezikian, J. P. The anabolic effects of parathyroid hormone therapy. Clin. Geriatr. Med. 19, 415–432 (2003).

    PubMed  Google Scholar 

  35. Jiang, Y. et al. Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J. Bone Miner. Res. 18, 1932–1941 (2003).

    CAS  PubMed  Google Scholar 

  36. Jilka, R. L. et al. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone 44, 275–286 (2009).

    CAS  PubMed  Google Scholar 

  37. Lindsay, R. et al. Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J. Bone Miner. Res. 22, 495–502 (2007).

    CAS  PubMed  Google Scholar 

  38. Satterwhite, J. et al. Pharmacokinetics of teriparatide (rhPTH[1–34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif. Tissue Int. 87, 485–492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Verhaar, H. J. & Lems, W. F. PTH analogues and osteoporotic fractures. Expert Opin. Biol. Ther. 10, 1387–1394 (2010).

    CAS  PubMed  Google Scholar 

  40. Chen, P. et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J. Bone Miner. Res. 20, 962–970 (2005).

    CAS  PubMed  Google Scholar 

  41. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    CAS  PubMed  Google Scholar 

  42. Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Intern. Med. 146, 326–339 (2007).

    PubMed  Google Scholar 

  43. Miller, P. D. et al. Occurrence of hypercalciuria in patients with osteoporosis treated with teriparatide. J. Clin. Endocrinol. Metab. 92, 3535–3541 (2007).

    CAS  PubMed  Google Scholar 

  44. Inomata, N., Akiyama, M., Kubota, N. & Jüppner, H. Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH-(1–84). Endocrinology 136, 4732–4740 (1995).

    CAS  PubMed  Google Scholar 

  45. Murray, T. M., Rao, L. G., Divieti, P. & Bringhurst, F. R. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr. Rev. 26, 78–113 (2005).

    CAS  PubMed  Google Scholar 

  46. Orwoll, E. S. et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J. Bone Miner. Res. 18, 9–17 (2003).

    CAS  PubMed  Google Scholar 

  47. Kaufman, J. M. et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos. Int. 16, 510–516 (2005).

    CAS  PubMed  Google Scholar 

  48. Marcus, R., Wang, O., Satterwhite, J. & Mitlak, B. The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J. Bone Miner. Res. 18, 18–23 (2003).

    CAS  PubMed  Google Scholar 

  49. Keaveny, T. M. et al. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J. Bone Miner. Res. 22, 149–157 (2007).

    CAS  PubMed  Google Scholar 

  50. Nevitt, M. C. et al. Reduced risk of back pain following teriparatide treatment: a meta-analysis. Osteoporos. Int. 17, 273–280 (2006).

    PubMed  Google Scholar 

  51. Nevitt, M. C. et al. Reduction in the risk of developing back pain persists at least 30 months after discontinuation of teriparatide treatment: a meta-analysis. Osteoporos. Int. 17, 1630–1637 (2006).

    CAS  PubMed  Google Scholar 

  52. Lyritis, G. et al. Back pain during different sequential treatment regimens of teriparatide: results from EUROFORS. Curr. Med. Res. Opin. 26, 1799–1807 (2010).

    CAS  PubMed  Google Scholar 

  53. Lindsay, R. et al. Relationship between duration of teriparatide therapy and clinical outcomes in postmenopausal women with osteoporosis. Osteoporosporos. Int. 20, 943–948 (2009).

    CAS  Google Scholar 

  54. Cosman, F. et al. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 151–158 (2010).

    CAS  PubMed  Google Scholar 

  55. Moen, M. D. & Scott, L. J. Recombinant full-length parathyroid hormone (1–84). Drugs 66, 2371–2381 (2006).

    CAS  PubMed  Google Scholar 

  56. Zanchetta, J. R. et al. Treatment of postmenopausal women with osteoporosis with PTH(1–84) for 36 months: treatment extension study. Osteoporos. Med. Res. Opin. 26, 2627–2633 (2010).

    CAS  Google Scholar 

  57. Verhaar, H. J. & Lems, W. F. PTH-analogs: comparable or different? Arch. Gerontol. Geriatr. 49, e130–e132 (2009).

    CAS  PubMed  Google Scholar 

  58. Eastell, R. et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J. Bone Miner. Res. 24, 726–736 (2009).

    CAS  PubMed  Google Scholar 

  59. Langdahl, B. L. et al. Reduction in fracture rate and back pain and increased quality of life in postmenopausal women treated with teriparatide: 18-month data from the European Forsteo Observational Study (EFOS). Calcif. Tissue Int. 85, 484–493 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cosman, F. et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. Osteoporos. Bone Miner. Res. 16, 925–931 (2001).

    CAS  Google Scholar 

  61. Lindsay, R. et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch. Intern. Med. 164, 2024–2030 (2004).

    PubMed  Google Scholar 

  62. Lane, N. E. et al. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J. Bone Miner. Res. 15, 944–951 (2000).

    CAS  PubMed  Google Scholar 

  63. Kurland, E. S. et al. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos. Int. 15, 992–997 (2004).

    CAS  PubMed  Google Scholar 

  64. Rittmaster, R. S. et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J. Clin. Endocrinol. Metab. 85, 2129–2134 (2000).

    CAS  PubMed  Google Scholar 

  65. Black, D. M. et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N. Engl. J. Med. 353, 555–565 (2005).

    CAS  PubMed  Google Scholar 

  66. Obermayer-Pietsch, B. M. et al. Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J. Bone Miner. Res. 23, 1591–1600 (2008).

    CAS  PubMed  Google Scholar 

  67. Boonen, S. et al. Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 93, 852–860 (2008).

    CAS  PubMed  Google Scholar 

  68. Cosman, F. et al. Daily and cyclic parathyroid hormone in women receiving alendronate. N. Engl. J. Med. 353, 566–575 (2005).

    CAS  PubMed  Google Scholar 

  69. Cosman, F., Nieves, J. W., Zion, M., Barbuto, N. & Lindsay, R. Retreatment with teriparatide one year after the first teriparatide course in patients on continued long-term alendronate. J. Bone Miner. Res. 24, 1110–1115 (2009).

    PubMed  Google Scholar 

  70. Finkelstein, J. S. et al. Effects of teriparatide retreatment in osteoporotic men and women. J. Clin. Endocrinol. Metab. 94, 2495–2501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller, P. D. Safety of parathyroid hormone for the treatment of osteoporosis. Curr. Osteoporos. Rep. 6, 12–16 (2008).

    PubMed  Google Scholar 

  72. Vahle, J. L. et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol. Pathol. 30, 312–321 (2002).

    CAS  PubMed  Google Scholar 

  73. Tashjian, A. H. Jr & Goltzman, D. On the interpretation of rat carcinogenicity studies for human PTH(1–34) and human PTH(1–84). J. Bone Miner. Res. 23, 803–811 (2008).

    CAS  PubMed  Google Scholar 

  74. Jolette, J. et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1–84 in a 2-year study in Fischer 344 rats. Toxicol. Pathol. 34, 929–940 (2006).

    CAS  PubMed  Google Scholar 

  75. Harper, K. D., Krege, J. H., Marcus, R. & Mitlak, B. H. Osteosarcoma and teriparatide? J. Bone Miner. Res. 22, 334 (2007).

    PubMed  Google Scholar 

  76. Subbiah, V., Madsen, V. S., Raymond, A. K., Benjamin, R. S. & Ludwig, J. A. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos. Int. 21, 1041–1045 (2010).

    CAS  PubMed  Google Scholar 

  77. Tashjian, A. H. Jr & Chabner, B. A. Commentary on clinical safety of recombinant human parathyroid hormone 1–34 in the treatment of osteoporosis in men and postmenopausal women. J. Bone Miner. Res. 17, 1151–1161 (2002).

    CAS  PubMed  Google Scholar 

  78. Hodsman, A., Papaioannou, A. & Cranney, A. Clinical practice guidelines for the use of parathyroid hormone in the treatment of osteoporosis. OsteoporosAJ 175, 48 (2006).

    Google Scholar 

  79. Hodsman, A. B. et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr. Rev. 26, 688–703 (2005).

    CAS  PubMed  Google Scholar 

  80. van Staa, T. P. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Osteoporosalcif. Tissue Int. 79, 129–137 (2006).

    CAS  Google Scholar 

  81. Saag, K. G. et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 357, 2028–2039 (2007).

    CAS  PubMed  Google Scholar 

  82. Saag, K. G. et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 60, 3346–3355 (2009).

    CAS  PubMed  Google Scholar 

  83. Prince, R. et al. Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J. Bone Miner. Res. 20, 1507–1513 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. E. Kraenzlin researched the data for the article. Both authors provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marius E. Kraenzlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraenzlin, M., Meier, C. Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 7, 647–656 (2011). https://doi.org/10.1038/nrendo.2011.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing