Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Congenital generalized lipodystrophies—new insights into metabolic dysfunction

Key Points

  • Congenital generalized lipodystrophy (CGL) is a heterogeneous autosomal recessive disorder characterized by near total absence of body fat and extreme muscularity present at birth or soon thereafter

  • Patients with CGL are extremely hypoleptinaemic and are predisposed to develop metabolic complications, such as diabetes mellitus, hypertriglyceridaemia and hepatic steatosis

  • Four distinct subtypes of CGL exist: type 1 is associated with AGPAT2 mutations; type 2 is associated with BSCL2 mutations; type 3 is associated with CAV1 mutation; and type 4 is associated with PTRF mutations

  • Therapeutic options for patients with CGL include conventional lipid-lowering and antihyperglycaemic drugs, as well as metreleptin replacement therapy

Abstract

Congenital generalized lipodystrophy (CGL) is a heterogeneous autosomal recessive disorder characterized by a near complete lack of adipose tissue from birth and, later in life, the development of metabolic complications, such as diabetes mellitus, hypertriglyceridaemia and hepatic steatosis. Four distinct subtypes of CGL exist: type 1 is associated with AGPAT2 mutations; type 2 is associated with BSCL2 mutations; type 3 is associated with CAV1 mutations; and type 4 is associated with PTRF mutations. The products of these genes have crucial roles in phospholipid and triglyceride synthesis, as well as in the formation of lipid droplets and caveolae within adipocytes. The predominant cause of metabolic complications in CGL is excess triglyceride accumulation in the liver and skeletal muscle owing to the inability to store triglycerides in adipose tissue. Profound hypoleptinaemia further exacerbates metabolic derangements by inducing a voracious appetite. Patients require psychological support, a low-fat diet, increased physical activity and cosmetic surgery. Aside from conventional therapy for hyperlipidaemia and diabetes mellitus, metreleptin replacement therapy can dramatically improve metabolic complications in patients with CGL. In this Review, we discuss the molecular genetic basis of CGL, the pathogenesis of the disease's metabolic complications and therapeutic options for patients with CGL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical features of patients with CGL.
Figure 2: Lipid droplet formation in adipocytes.
Figure 3: Mechanism of developing metabolic complications in obesity and CGL.

Similar content being viewed by others

References

  1. Garg, A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 350, 1220–1234 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Berardinelli, W. An undiagnosed endocrinometabolic syndrome: report of 2 cases. J. Clin. Endocrinol. Metab. 14, 193–204 (1954).

    Article  CAS  PubMed  Google Scholar 

  3. Seip, M. Lipodystrophy and gigantism with associated endocrine manifestations: a new diencephalic syndrome? Acta Paediatrica 48, 555–574 (1959).

    CAS  PubMed  Google Scholar 

  4. Wiedemann, H. R. Newly recognized congenital progeroid disorder. Am. J. Med. Genet. 42, 857 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Rautenstrauch, T., Snigula, F. & Wiedemann, H. R. Neonatal progeroid syndrome (Wiedemann-Rautenstrauch). A follow-up study [German]. Klin. Padiatr. 206, 440–443 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Dunnigan, M. G., Cochrane, M. A., Kelly, A. & Scott, J. W. Familial lipoatrophic diabetes with dominant transmission. A new syndrome. Q. J. Med. 43, 33–48 (1974).

    CAS  PubMed  Google Scholar 

  7. Young, L. W. et al. New syndrome manifested by mandibular hypoplasia, acroosteolysis, stiff joints and cutaneous atrophy (mandibuloacral dysplasia) in two unrelated boys. Birth Defects Orig. Artic. Ser. 7, 291–297 (1971).

    CAS  PubMed  Google Scholar 

  8. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Garg, A. et al. Atypical progeroid syndrome due to heterozygous missense LMNA mutations. J. Clin. Endocrinol. Metab. 94, 4971–4983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelosini, C. et al. Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism 63, 1385–1389 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Capeau, J. et al. Human lipodystrophies: genetic and acquired diseases of adipose tissue. Endocr. Dev. 19, 1–20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agarwal, A. K. et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J. Clin. Endocrinol. Metab. 88, 4840–4847 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Chan, J. L. & Oral, E. A. Clinical classification and treatment of congenital and acquired lipodystrophy. Endocr. Pract. 16, 310–323 (2010).

    Article  PubMed  Google Scholar 

  15. Van Maldergem, L. et al. Genotype-phenotype relationships in Berardinelli-Seip congenital lipodystrophy. J. Med. Genet. 39, 722–733 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thauvin-Robinet, C. et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am. J. Hum. Genet. 93, 141–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dyment, D. A. et al. Mutations in PIK3R1 cause SHORT syndrome. Am. J. Hum. Genet. 93, 158–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chudasama, K. K. et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am. J. Hum. Genet. 93, 150–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masotti, A. et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am. J. Hum. Genet. 96, 295–300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shastry, S. et al. A novel syndrome of mandibular hypoplasia, deafness, and progeroid features associated with lipodystrophy, undescended testes, and male hypogonadism. J. Clin. Endocrinol. Metab. 95, E192–E197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garg, A. & Xing, C. De novo heterozygous FBN1 mutations in the extreme C-terminal region cause progeroid fibrillinopathy. Am. J. Med. Genet. A 164A, 1341–1345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garg, A. et al. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am. J. Med. Genet. A http://dx.doi.org/10.1002/ajmg.a.37115.

  23. Prokocimer, M., Barkan, R. & Gruenbaum, Y. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 12, 533–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad, Z., Zackai, E., Medne, L. & Garg, A. Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24. Am. J. Med. Genet. A 152A, 2703–2710 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simha, V., Agarwal, A. K., Oral, E. A., Fryns, J. P. & Garg, A. Genetic and phenotypic heterogeneity in patients with mandibuloacral dysplasia-associated lipodystrophy. J. Clin. Endocrinol. Metab. 88, 2821–2824 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal, A. K. et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farhan, S. M. et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can. J. Cardiol. 30, 1649–1654 (2014).

    Article  PubMed  Google Scholar 

  28. Saha, B. et al. A novel LMNA mutation causes altered nuclear morphology and symptoms of familial partial lipodystrophy (Dunnigan variety) with progeroid features. Mol. Syndromol. 1, 127–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Donadille, B. et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J. Rare Dis. 8, 106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Payne, F. et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl Acad. Sci. USA 111, 8901–8906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garg, A. Lipodystrophies. Am. J. Med. 108, 143–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Garg, A. Clinical review: Lipodystrophies: genetic and acquired body fat disorders. J. Clin. Endocrinol. Metab. 96, 3313–3325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nolis, T. Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies. J. Hum. Genet. 59, 16–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Pardini, V. C. et al. Leptin levels, β-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatrophic diabetes. J. Clin. Endocrinol. Metab. 83, 503–508 (1998).

    CAS  PubMed  Google Scholar 

  35. Magre, J. et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28, 365–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal, A. K. et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, C. A. et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 93, 1129–1134 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi, Y. K. et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 119, 2623–2633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dyment, D. A. et al. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur. J. Med. Genet. 57, 524–526 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Knebel, B. et al. A mutation in the c-fos gene associated with congenital generalized lipodystrophy. Orphanet J. Rare Dis. 8, 119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Seip, M. & Trygstad, O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatrica Suppl. 413, 2–28 (1996).

    Article  CAS  Google Scholar 

  42. Westvik, J. Radiological features in generalized lipodystrophy. Acta Paediatrica Suppl. 413, 44–51 (1996).

    Article  CAS  Google Scholar 

  43. Garg, A., Fleckenstein, J. L., Peshock, R. M. & Grundy, S. M. Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. J. Clin. Endocrinol. Metab. 75, 358–361 (1992).

    CAS  PubMed  Google Scholar 

  44. Seip, M. & Trygstad, O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr. Suppl. 413, 2–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Garg, A. et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J. Clin. Endocrinol. Metab. 84, 3390–3394 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. [No authors listed]. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 1–1975. N. Engl. J. Med. 292, 35–41 (1975).

  47. Chandalia, M., Garg, A., Vuitch, F. & Nizzi, F. Postmortem findings in congenital generalized lipodystrophy. J. Clin. Endocrinol. Metab. 80, 3077–3081 (1995).

    CAS  PubMed  Google Scholar 

  48. Javor, E. D. et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J. Clin. Endocrinol. Metab. 89, 3199–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Upreti, V., Dhull, P., Patnaik, S. K. & Kumar, K. V. An unusual cause of delayed puberty: Berardinelli-Seip syndrome. J. Pediatr. Endocrinol. Metab. 25, 1157–1160 (2012).

    Article  PubMed  Google Scholar 

  50. Musso, C. et al. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism 54, 255–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lungu, A. O., Zadeh, E. S., Goodling, A., Cochran, E. & Gorden, P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 97, 563–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Abel, B. S., Muniyappa, R., Skarulis, M. C., Gorden, P. & Brown, R. J. Recombinant human leptin (metreleptin) administration augments nocturnal LH secretion in lipodystrophy patients. Presented at The Endocrine Society's 97th Annual Meeting & Expo (2015).

  53. Maguire, M., Lungu, A., Gorden, P., Cochran, E. & Stratton, P. Pregnancy in a woman with congenital generalized lipodystrophy: leptin's vital role in reproduction. Obstet. Gynecol. 119, 452–455 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. McNally, M. et al. Successful renal transplantation in a patient with congenital generalized lipodystrophy: a case report. Am. J. Transplant. 4, 447–449 (2004).

    Article  PubMed  Google Scholar 

  55. Miranda, D. M. et al. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin. Endocrinol. (Oxf.) 71, 512–517 (2009).

    Article  CAS  Google Scholar 

  56. Gomes, K. B. et al. Mutations in the Seipin and AGPAT2 genes clustering in consanguineous families with Berardinelli-Seip congenital lipodystrophy from two separate geographical regions of Brazil. J. Clin. Endocrinol. Metab. 89, 357–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, M. et al. Lack of testicular seipin causes teratozoospermia syndrome in men. Proc. Natl Acad. Sci. USA 111, 7054–7059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brunzell, J. D., Shankle, S. W. & Bethune, J. E. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann. Intern. Med. 69, 501–516 (1968).

    Article  CAS  PubMed  Google Scholar 

  59. Fleckenstein, J. L., Garg, A., Bonte, F. J., Vuitch, M. F. & Peshock, R. M. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skeletal Radiol. 21, 381–386 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Guell-Gonzalez, J. R. et al. Bone lesions in congenital generalised lipodystrophy. Lancet 2, 104–105 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Shinya, T. et al. Computed tomography findings of congenital generalized lipodystrophy: multiple nodular fatty liver and diffuse sclerosis of bones. Radiat. Med. 25, 484–487 (2007).

    Article  PubMed  Google Scholar 

  62. Shirwalkar, H. U. et al. Congenital generalized lipodystrophy in an Indian patient with a novel mutation in BSCL2 gene. J. Inherit Metab. Dis. 31 (Suppl. 2), S317–S322 (2008).

    Article  PubMed  Google Scholar 

  63. Christensen, J. D. et al. Bone mineral content in patients with congenital generalized lipodystrophy is unaffected by metreleptin replacement therapy. J. Clin. Endocrinol. Metab. 99, E1493–E1500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garg, A., Chandalia, M. & Vuitch, F. Severe islet amyloidosis in congenital generalized lipodystrophy. Diabetes Care 19, 28–31 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Diker-Cohen, T., Cochran, E., Gorden, P. & Brown, R. J. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J. Clin. Endocrinol. Metab. 100, 1802–1810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garg, A. in Dyslipidemias: Pathophysiology, Evaluation and Management. (ed. Garg, A.) 287–302 (Springer, 2015).

    Book  Google Scholar 

  68. Rego, A. G. et al. Cardiometabolic abnormalities in patients with Berardinelli-Seip syndrome [Portuguese]. Arq. Bras. Cardiol. 94, 109–118 (2010).

    Article  PubMed  Google Scholar 

  69. Indumathi, C. K., Lewin, S. & Ayyar, V. Berardinelli Seip syndrome with insulin-resistant diabetes mellitus and stroke in an infant. Indian J. Endocrinol. Metab. 15, S62–S64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haque, W. A., Shimomura, I., Matsuzawa, Y. & Garg, A. Serum adiponectin and leptin levels in patients with lipodystrophies. J. Clin. Endocrinol. Metab. 87, 2395–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Antuna-Puente, B. et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J. Clin. Endocrinol. Metab. 95, 1463–1468 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. McDuffie, J. R. et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J. Clin. Endocrinol. Metab. 89, 4258–4263 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rajab, A. et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 6, e1000874 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shastry, S. et al. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am. J. Med. Genet. A 152A, 2245–2253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ardissone, A. et al. Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy. BMC Med. Genet. 14, 89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dwianingsih, E. K. et al. A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol. Genet. Metab. 101, 233–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. UniProt. FOS - FOS Protein - Homo sapiens (human) [online], (2015).

  78. Online Mendelian Inheritance in Man©. #608594 Lipodystrophy, congenital generalized, type 1; CGL1 [online], (2014).

  79. Garg, A. & Agarwal, A. K. Lipodystrophies: disorders of adipose tissue biology. Biochim. Biophys. Acta 1791, 507–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cortes, V. A. et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 9, 165–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Agarwal, A. K. & Garg, A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol. Metab. 14, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leung, D. W. The structure and functions of human lysophosphatidic acid acyltransferases. Front. Biosci. 6, D944–D953 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Agarwal, A. K., Barnes, R. I. & Garg, A. Genetic basis of congenital generalized lipodystrophy. Int. J. Obes. Relat. Metab. Disord. 28, 336–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Agarwal, A. K. & Garg, A. Enzymatic activity of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 11: upregulated in breast and cervical cancers. J. Lipid Res. 51, 2143–2152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Agarwal, A. K. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr. Opin. Lipidol. 23, 290–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Fu, M. et al. Mutations in Gng3lg and AGPAT2 in Berardinelli-Seip congenital lipodystrophy and Brunzell syndrome: phenotype variability suggests important modifier effects. J. Clin. Endocrinol. Metab. 89, 2916–2922 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Magre, J. et al. Prevalence of mutations in AGPAT2 among human lipodystrophies. Diabetes 52, 1573–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Haque, W., Garg, A. & Agarwal, A. K. Enzymatic activity of naturally occurring 1-acylglycerol-3-phosphate-O-acyltransferase 2 mutants associated with congenital generalized lipodystrophy. Biochem. Biophys. Res. Commun. 327, 446–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Simha, V. & Garg, A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy due to mutations in the AGPAT2 or Seipin genes. J. Clin. Endocrinol. Metab. 88, 5433–5437 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Gale, S. E. et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J. Biol. Chem. 281, 11082–11089 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Subauste, A. R. et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes 61, 2922–2931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Online Mendelian Inheritance in Man©. #269700 Lipodystrophy, congenital generalized, type 2; CGL2 [online], (2014).

  94. Agarwal, A. K. & Garg, A. Seipin: a mysterious protein. Trends Mol. Med. 10, 440–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Szymanski, K. M. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. USA 104, 20890–20895 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fei, W. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180, 473–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, W. et al. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Hum. Mol. Genet. 23, 502–513 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Cartwright, B. R. et al. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26, 726–739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Talukder, M. M., Sim, M. F., O'Rahilly, S., Edwardson, J. M. & Rochford, J. J. Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol. Metab. 4, 199–209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sim, M. F. et al. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56, 2498–2506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sim, M. F. et al. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wee, K., Yang, W., Sugii, S. & Han, W. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci. Rep. 3, e00141 (2014).

    Google Scholar 

  103. Schuster, J. et al. Exome sequencing circumvents missing clinical data and identifies a BSCL2 mutation in congenital lipodystrophy. BMC Med. Genet. 15, 71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guillen-Navarro, E. et al. A new seipin-associated neurodegenerative syndrome. J. Med. Genet. 50, 401–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat. Genet. 36, 271–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Cui, X. et al. Seipin ablation in mice results in severe generalized lipodystrophy. Hum. Mol. Genet. 20, 3022–3030 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, W. et al. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol. Cell Biol. 32, 1099–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Prieur, X. et al. Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice. Diabetologia 56, 1813–1825 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, W., Zhou, H., Saha, P., Li, L. & Chan, L. Molecular mechanisms underlying fasting modulated liver insulin sensitivity and metabolism in male lipodystrophic Bscl2/Seipin-deficient mice. Endocrinology 155, 4215–4225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, L. et al. Adipose-specific knockout of Seipin/Bscl2 results in progressive lipodystrophy. Diabetes 63, 2320–2331 (2014).

    Article  PubMed  Google Scholar 

  111. Ebihara, C. et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum. Mol. Genet. 24, 4238–4249 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, W. et al. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice. PLoS ONE 8, e82526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boutet, E. et al. Seipin deficiency alters fatty acid Δ9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie 91, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Online Mendelian Inheritance in Man©. #612526 Lipodystrophy, congenital generalized, type 3; CGL3 [online], (2014).

  115. Engelman, J. A., Zhang, X. L., Galbiati, F. & Lisanti, M. P. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett. 429, 330–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Stan, R. V. Structure of caveolae. Biochim. Biophys. Acta 1746, 334–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Razani, B. & Lisanti, M. P. Caveolin-deficient mice: insights into caveolar function human disease. J. Clin. Invest. 108, 1553–1561 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blouin, C. M. et al. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J. Lipid Res. 51, 945–956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Briand, N. et al. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation. Diabetes 63, 4032–4044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bosch, M. et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr. Biol. 21, 681–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G. & Scherer, P. E. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 15, 171–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Williams, T. M. & Lisanti, M. P. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288, C494–C506 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Le Lay, S. & Kurzchalia, T. V. Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim. Biophys. Acta 1746, 322–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Austin, E. D. et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet. 5, 336–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Online Mendelian Inheritance in Man©. #613327 Lipodystrophy, congenital generalized, type 4; CGL4 [online], (2013).

  128. Liu, L. & Pilch, P. F. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J. Biol. Chem. 283, 4314–4322 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Perez-Diaz, S. et al. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J. 28, 3769–3779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rajab, A., Heathcoate, K., Joshi, S., Jeffery, S. & Patton, M. Heterogeneity for congenital generalized lipodystrophy in seventeen patients from Oman. Am. J. Hum. Genet. 110, 219–225 (2002).

    Article  Google Scholar 

  131. Simha, V., Agarwal, A. K., Aronin, P. A., Iannaccone, S. T. & Garg, A. Novel subtype of congenital generalized lipodystrophy associated with muscular weakness and cervical spine instability. Am. J. Med. Genet. A 146A, 2318–2326 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu, L. et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8, 310–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ding, S. Y. et al. Pleiotropic effects of cavin-1 deficiency on lipid metabolism. J. Biol. Chem. 289, 8473–8483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. GeneTests [online], (2015).

  135. Cortes, V. A. et al. Divergent metabolic phenotype between two sisters with congenital generalized lipodystrophy due to double AGPAT2 homozygous mutations. A clinical, genetic and in silico study. PLoS ONE 9, e87173 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Agarwal, A. K. & Garg, A. Genetic basis of lipodystrophies and management of metabolic complications. Annu. Rev. Med. 57, 297–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Agarwal, A. K. et al. Human 1-acylglycerol-3-phosphate O-acyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2−/− gene lipodystrophic mice. J. Biol. Chem. 286, 37676–37691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sankella, S., Garg, A., Horton, J. D. & Agarwal, A. K. Hepatic gluconeogenesis is enhanced by phosphatidic acid which remains uninhibited by insulin in lipodystrophic Agpat2−/− mice. J. Biol. Chem. 289, 4762–4777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Muniyappa, R. et al. Effects of leptin replacement therapy on pancreatic β-cell function in patients with lipodystrophy. Diabetes Care 37, 1101–1107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 18, 139–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Okada, E., Iwahira, Y. & Maruyama, Y. Buttock deformity repair for congenital generalized lipodystrophy. Plast. Reconstr. Surg. 95, 744–746 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. [No authors listed]. Metreleptin (Myalept): a leptin analog for generalized lipodystrophy. Med. Lett. Drugs Ther. 57, 13–14 (2015).

  144. Simha, V. & Garg, A. Inherited lipodystrophies and hypertriglyceridemia. Curr. Opin. Lipidol. 20, 300–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Handelsman, Y. et al. The clinical approach to the detection of lipodystrophy - an AACE consensus statement. Endocr. Pract. 19, 107–116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Napolitano, C. & Priori, S. G. Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 4, 675–678 (2007).

    Article  PubMed  Google Scholar 

  147. Prieur, X., Le May, C., Magre, J. & Cariou, B. Congenital lipodystrophies and dyslipidemias. Curr. Atheroscler. Rep. 16, 437 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Araujo-Vilar, D. et al. Recombinant human leptin treatment in genetic lipodystrophic syndromes: the long-term Spanish experience. Endocrine 49, 139–147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Beltrand, J. et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics 120, e291–e296 (2007).

    Article  PubMed  Google Scholar 

  150. Chan, J. L. et al. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr. Pract. 17, 922–932 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Safar Zadeh, E. et al. The liver diseases of lipodystrophy: the long-term effect of leptin treatment. J. Hepatol. 59, 131–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Ebihara, K. et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J. Clin. Endocrinol. Metab. 92, 532–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. FDA. Endocrinologic and metabolic drugs advisory committee briefing document: METRELEPTIN (BLA STN125390) [online], (2013).

  154. Oral, E. A. & Chan, J. L. Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr. Pract. 16, 324–333 (2010).

    Article  PubMed  Google Scholar 

  155. Cortes, V. A. et al. Leptin ameliorates insulin resistance and hepatic steatosis in Agpat2−/− lipodystrophic mice independent of hepatocyte leptin receptors. J. Lipid Res. 55, 276–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chou, K. & Perry, C. M. Metreleptin: first global approval. Drugs 73, 989–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Okamoto, H. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Robciuc, M. R. et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. Vasc. Biol. 33, 1706–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  161. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  162. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  163. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Musso, C. et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore) 83, 209–222 (2004).

    Article  CAS  Google Scholar 

  165. Pivnick, E. K. et al. Neonatal progeroid (Wiedemann-Rautenstrauch) syndrome: report of five new cases and review. Am. J. Med. Genet. 90, 131–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Hou, J. W. Natural course of neonatal progeroid syndrome. Pediatr. Neonatol. 50, 102–109 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.G. acknowledges grant support from the NIH RO1 DK105448, CTSA Grant UL1 RR024982 and Southwest Medical Foundation. We thank P.-Y. Tseng for help with illustrations and mutational screening.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Abhimanyu Garg.

Ethics declarations

Competing interests

A.G. co-holds a patent regarding the use of leptin for treating human lipoatrophy and the method of determining predisposition to this treatment but receives no financial compensation. A.G. has received research grants from Aegerion, Astra-Zeneca, Bristol-Myers-Squibb and Pfizer and is a consultant for Amgen, Back Bay Life Sciences, Biomarin Pharmaceuticals, BioMedical Insights, Clearview Healthcare, Eli Lilly, Engage Health, Gerson Lehrman Group, Health Advances, Ipsen Pharmaceuticals, Intellisphere, Medscape and Tekmira. A.G. is also an advisory board member for AstraZeneca. N.P. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patni, N., Garg, A. Congenital generalized lipodystrophies—new insights into metabolic dysfunction. Nat Rev Endocrinol 11, 522–534 (2015). https://doi.org/10.1038/nrendo.2015.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing