Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular therapy for acute myeloid leukaemia

Key Points

  • More than 97% of patients with acute myeloid leukaemia (AML) demonstrate at least one clonal somatic abnormality on comprehensive mutational profiling, which is increasingly being performed in the clinic

  • Unique mutational profiles can be used to predict a response to both standard and investigational therapies in patients with newly diagnosed or relapsed and/or refractory AML

  • Molecular abnormalities associated with AML are also predictors of outcome following allogeneic haematopoietic-stem-cell transplantation

  • Comprehensive mutational profiling should be performed in all newly diagnosed patients with AML using standardized high-throughput assays

  • Comprehensive mutational profiling will enable consideration of novel targeted agents in the upfront setting, either alone or in combination with chemotherapy, and we hypothesize that this approach will improve outcomes of patients with this disease

Abstract

Acute myeloid leukaemia (AML) is a heterogeneous disease that is, in general, associated with a very poor prognosis. Multiple cytogenetic and molecular abnormalities that characterize different forms of AML have been used to better prognosticate patients and inform treatment decisions. Indeed, risk status in patients with this disease has classically been based on cytogenetic findings; however, additional molecular characteristics have been shown to inform risk assessment, including FLT3, NPM1, KIT, and CEBPA mutation status. Advances in sequencing technology have led to the discovery of novel somatic mutations in tissue samples from patients with AML, providing deeper insight into the mutational landscape of the disease. The majority of patients with AML (>97%) are found to have a clonal somatic abnormality on mutational profiling. Nevertheless, our understanding of the utility of mutation profiling in clinical practice remains incomplete and is continually evolving, and evidence-based approaches to application of these data are needed. In this Review, we discuss the evidence-base for integrating mutational data into treatment decisions for patients with AML, and propose novel therapeutic algorithms in the era of molecular medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed treatment algorithm for patients aged >60 years with newly diagnosed AML.
Figure 2: Proposed treatment algorithm for patients aged ≤60 years with newly diagnosed AML.

Similar content being viewed by others

References

  1. Estey, E. & Dohner, H. Acute myeloid leukaemia. Lancet 368, 1894–1907 (2006).

    PubMed  Google Scholar 

  2. National Cancer Institute. SEER Stat Fact Sheets: Acute Myeloid Leukemia (AML) NIH [online], (2015).

  3. Pulte, D., Gondos, A. & Brenner, H. Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica 93, 594–600 (2008).

    PubMed  Google Scholar 

  4. Thein, M. S., Ershler, W. B., Jemal, A., Yates, J. W. & Baer, M. R. Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer 119, 2720–2727 (2013).

    PubMed  Google Scholar 

  5. Rockova, V. et al. Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood 118, 1069–1076 (2011).

    CAS  PubMed  Google Scholar 

  6. Dohner, K. & Paschka, P. Intermediate-risk acute myeloid leukemia therapy: current and future. Hematology Am. Soc. Hematol. Ed. Program 2014, 34–43 (2014).

    Google Scholar 

  7. National Comprehensive Cancer Network. NCCN Guidelines for Treatment of Cancer by Site: Acute Myeloid Leukemia (Version 1.2015) [online], (2015).

  8. Dohner, H. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115, 453–474 (2010).

    PubMed  Google Scholar 

  9. Krug, U. et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet 376, 2000–2008 (2010).

    CAS  PubMed  Google Scholar 

  10. Patel, J. P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel, J. P. & Levine, R. L. How do novel molecular genetic markers influence treatment decisions in acute myeloid leukemia? Hematology Am. Soc. Hematol. Ed. Program 2012, 28–34 (2012).

    Google Scholar 

  12. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  13. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    CAS  PubMed  Google Scholar 

  14. Cho, Y. U. et al. Preferential occurrence of spliceosome mutations in acute myeloid leukemia with preceding myelodysplastic syndrome and/or myelodysplasia morphology. Leuk. Lymphoma 56, 2301–2308 (2015).

    CAS  PubMed  Google Scholar 

  15. Aslanyan, M. G. et al. Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML-12 clinical trial. Ann. Hematol. 93, 1401–1412 (2014).

    CAS  PubMed  Google Scholar 

  16. Gray, S. W., Hicks-Courant, K., Cronin, A., Rollins, B. J. & Weeks, J. C. Physicians' attitudes about multiplex tumor genomic testing. J. Clin. Oncol. 32, 1317–1323 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Ohtake, S. et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study. Blood 117, 2358–2365 (2011).

    CAS  PubMed  Google Scholar 

  18. Li, X., Xu, S., Tan, Y. & Chen, J. The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. Cochrane Database of Systematic Reviews, Issue 6. Art. No.: CD010432 http://dx.doi.org/10.1002/14651858.CD010432.pub2 (2015).

  19. Fernandez, H. F. et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361, 1249–1259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. H. et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood 118, 3832–3841 (2011).

    CAS  PubMed  Google Scholar 

  21. Burnett, A. K. et al. A randomized comparison of daunorubicin 90mg/m2 versus 60mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood 125, 3878–3885 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Slovak, M. L. et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96, 4075–4083 (2000).

    CAS  PubMed  Google Scholar 

  23. Sehgal, A. R. et al. DNMT3A mutational status affects the results of dose-escalated induction therapy in acute myelogenous leukemia. Clin. Cancer Res. 21, 1614–1620 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lo-Coco, F. et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369, 111–121 (2013).

    CAS  PubMed  Google Scholar 

  25. Willemze, R. et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J. Clin. Oncol. 32, 219–228 (2014).

    CAS  PubMed  Google Scholar 

  26. Schlenk, R. F. et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 18, 1798–1803 (2004).

    CAS  PubMed  Google Scholar 

  27. Schlenk, R. F. et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 94, 54–60 (2009).

    CAS  PubMed  Google Scholar 

  28. Schlenk, R. F. et al. All-trans retinoic acid improves outcome in younger adult patients with nucleophosmin-1 mutated acute myeloid leukemia — results of the AMLSG 07–04 Randomized Treatment Trial [online], (2011).

    Google Scholar 

  29. Burnett, A. K. et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115, 948–956 (2010).

    CAS  PubMed  Google Scholar 

  30. El Hajj, H. et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 125, 3447–3454 (2015).

    CAS  PubMed  Google Scholar 

  31. Martelli, M. P. et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 125, 3455–3465 (2015).

    CAS  PubMed  Google Scholar 

  32. Tassara, M. et al. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients. 123, 4027–4036 (2014).

  33. Metzeler, K. H. et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia 26, 1106–1107 (2012).

    CAS  PubMed  Google Scholar 

  34. Itzykson, R. et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25, 1147–1152 (2011).

    CAS  PubMed  Google Scholar 

  35. Emadi, A. et al. Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia. Am. J. Hematol. 90, E77–E79 (2015).

    CAS  PubMed  Google Scholar 

  36. Rampal, R. et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 9, 1841–1855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y. et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell 57, 662–673 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Quintas-Cardama, A. et al. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood 120, 4840–4845 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Renner, A. G. et al. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood 114, 659–662 (2009).

    CAS  PubMed  Google Scholar 

  40. Dohner, H. et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood 124, 1426–1433 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Knapper, S. The clinical development of FLT3 inhibitors in acute myeloid leukemia. Expert Opin. Investig. Drugs 20, 1377–1395 (2011).

    CAS  PubMed  Google Scholar 

  42. Kayser, S. & Levis, M. J. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk. Lymphoma 55, 243–255 (2014).

    CAS  PubMed  Google Scholar 

  43. Wiernik, P. H. FLT3 inhibitors for the treatment of acute myeloid leukemia. Clin. Adv. Hematol. Oncol. 8, 429–436 (2010).

    PubMed  Google Scholar 

  44. Wander, S. A., Levis, M. J. & Fathi, A. T. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther. Adv. Hematol. 5, 65–77 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inaba, H. et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J. Clin. Oncol. 29, 3293–3300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Serve, H. et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J. Clin. Oncol. 31, 3110–3118 (2013).

    CAS  PubMed  Google Scholar 

  47. Röllig, C. et al. Sorafenib versus placebo in addition to standard therapy in younger patients with newly diagnosed acute myeloid leukemia: results from 267 patients treated in the randomized placebo-controlled SAL-soraml trial [online], (2014).

    Google Scholar 

  48. Macdonald, D. A. et al. A Phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk. Lymphoma 54, 760–766 (2013).

    CAS  PubMed  Google Scholar 

  49. Ravandi, F. et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 121, 4655–4662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stone, R. M. et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 26, 2061–2068 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  52. Knapper, S. et al. A randomised comparison of the sequential addition of the FLT3 inhibitor lestaurtinib (CEP701) to standard first line chemotherapy for FLT3-Mutated acute myeloid leukemia: the UK experience [online], (2014).

    Google Scholar 

  53. Knapper, S. et al. A Phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108, 3262–3270 (2006).

    CAS  PubMed  Google Scholar 

  54. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  55. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  56. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  57. Duncavage, E. J. & Tandon, B. The utility of next-generation sequencing in diagnosis and monitoring of acute myeloid leukemia and myelodysplastic syndromes. Int. J. Lab. Hematol. 37 (Suppl. 1), 115–121 (2015).

    PubMed  Google Scholar 

  58. Ibanez, M. et al. Rapid screening of ASXL1, IDH1, IDH2, and c-CBL mutations in de novo acute myeloid leukemia by high-resolution melting. J. Mol. Diagn. 14, 594–601 (2012).

    CAS  PubMed  Google Scholar 

  59. Cheng, D. T. et al. Detection of mutations in myeloid malignancies through paired-sample analysis of microdroplet-PCR deep sequencing data. J. Mol. Diagn. 16, 504–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Luthra, R. et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring. Haematologica 99, 465–473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schlenk, R. F. et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German–Austrian trial AMLHD98A. J. Clin. Oncol. 28, 4642–4648 (2010).

    PubMed  Google Scholar 

  62. Anderson, J. R., Cain, K. C. & Gelber, R. D. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710–719 (1983).

    CAS  PubMed  Google Scholar 

  63. Buchner, T., Berdel, W. E. & Kienast, J. Cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 359, 651 (2008).

    PubMed  Google Scholar 

  64. Cornelissen, J. J. et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood 109, 3658–3666 (2007).

    CAS  PubMed  Google Scholar 

  65. Stelljes, M. et al. Allogeneic transplantation as post-remission therapy for cytogenetically high-risk acute myeloid leukemia: landmark analysis from a single prospective multicenter trial. Haematologica 96, 972–979 (2011).

    PubMed  PubMed Central  Google Scholar 

  66. Estey, E. et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood 109, 1395–1400 (2007).

    CAS  PubMed  Google Scholar 

  67. Koreth, J. et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 301, 2349–2361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stelljes, M. et al. Allogeneic transplantation versus chemotherapy as postremission therapy for acute myeloid leukemia: a prospective matched pairs analysis. J. Clin. Oncol. 32, 288–296 (2014).

    PubMed  Google Scholar 

  69. Schlenk, R. F. et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909–1918 (2008).

    CAS  PubMed  Google Scholar 

  70. Röllig, C. et al. Allogeneic stem-cell transplantation in patients with NPM1-mutated acute myeloid leukemia: results from a prospective donor versus no-donor analysis of patients after upfront HLA typing within the SAL-AML 2003 trial. J. Clin. Oncol. 33, 403–410 (2015).

    PubMed  Google Scholar 

  71. Bornhauser, M. et al. Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood 109, 2264–2265 (2007).

    PubMed  Google Scholar 

  72. Laboure, G. et al. Potent graft-versus-leukemia effect after reduced-intensity allogeneic SCT for intermediate-risk AML with FLT3-ITD or wild-type NPM1 and CEBPA without FLT3-ITD. Biol. Blood Marrow Transplant. 18, 1845–1850 (2012).

    PubMed  Google Scholar 

  73. Schlenk, R. F. et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 124, 3441–3449 (2014).

    CAS  PubMed  Google Scholar 

  74. Brunet, S. et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J. Clin. Oncol. 30, 735–741 (2012).

    PubMed  Google Scholar 

  75. Deol, A. et al. FLT3 mutation increases relapse risk after allogeneic hematopoietic cell transplant for acute myeloid leukemia in first or second complete remission: a center for international blood and marrow transplant research (CIBMTR) analysis [online], (2014).

    Google Scholar 

  76. Chen, Y. B. et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for patients with FLT3-ITD AML [online], (2014).

  77. Sandmaier, B. M. et al. Results of a phase 1 study of quizartinib (AC220) as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic cell transplantation [online], (2014).

    Google Scholar 

  78. University of Ulm. Protocol in acute myeloid leukemia with FLT3-ITD. ClinicalTrials.gov[online], (2015).

  79. Wang, Y. et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of patients with mixed-lineage-leukemia-rearranged acute leukemia: results from a prospective, multi-center study. Am. J. Hematol. 89, 130–136 (2014).

    PubMed  Google Scholar 

  80. Groschel, S. et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German–Austrian Acute Myeloid Leukemia Study Group and the Dutch–Belgian–Swiss HOVON/SAKK Cooperative Group. J. Clin. Oncol. 31, 95–103 (2013).

    PubMed  Google Scholar 

  81. Gaidzik, V. I. et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J. Clin. Oncol. 29, 1364–1372 (2011).

    PubMed  Google Scholar 

  82. Chou, S. C. et al. Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations. Leuk. Res. 38, 1278–1284 (2014).

    CAS  PubMed  Google Scholar 

  83. Rucker, F. G. et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119, 2114–2121 (2012).

    PubMed  Google Scholar 

  84. Schlenk, R. F. et al. The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA. Blood 122, 1576–1582 (2013).

    CAS  PubMed  Google Scholar 

  85. Neubauer, A. et al. Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J. Clin. Oncol. 26, 4603–4609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Koo, H. M. et al. Enhanced sensitivity to 1-β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. Cancer Res. 56, 5211–5216 (1996).

    CAS  PubMed  Google Scholar 

  87. Koo, H. M., McWilliams, M. J., Alvord, W. G. & Vande Woude, G. F. Ras oncogene-induced sensitization to 1-β-D-arabinofuranosylcytosine. Cancer Res. 59, 6057–6062 (1999).

    CAS  PubMed  Google Scholar 

  88. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  91. Stein, E. M. et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies [online], (2014).

    Google Scholar 

  92. DiNardo, C. S. et al. AG-221, An oral, selective, first-in-class, potent inhibitor of the IDH2 mutant enzyme, induced durable responses in a phase 1 study of IDH2 mutation-positive advanced hematologic malignancies [online], (2015).

    Google Scholar 

  93. de Botton, S. et al. Clinical safety and activity of AG-120, a first-in-class, potent inhibitor of the IDH1-mutant protein, in a phase 1 study of patients with advanced IDH1-mutant hematologic malignancies [online], (2015).

    Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  95. Cortes, J. E. et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J. Clin. Oncol. 31, 3681–3687 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Levis, M. J. et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation [online], (2012).

    Google Scholar 

  97. Galanis, A. et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 123, 94–100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, C. C. et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc. Natl Acad. Sci. USA 111, 5319–5324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Randhawa, J. K. et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (pts) with activating FLT3 mutations [online], (2014).

    Google Scholar 

  100. Brandwein, J. M. et al. A phase I/II study of imatinib plus reinduction therapy for c-kit-positive relapsed/refractory acute myeloid leukemia: inhibition of Akt activation correlates with complete response. Leukemia 25, 945–952 (2011).

    CAS  PubMed  Google Scholar 

  101. Chevallier, P. et al. A phase II trial of high-dose imatinib mesylate for relapsed or refractory c-kit positive and Bcr-Abl negative acute myeloid leukaemia: the AFR-15 trial. Leuk. Res. 33, 1124–1126 (2009).

    CAS  PubMed  Google Scholar 

  102. Advani, A. S. et al. A phase 1 study of imatinib mesylate in combination with cytarabine and daunorubicin for c-kit positive relapsed acute myeloid leukemia. Leuk. Res. 34, 1622–1626 (2010).

    CAS  PubMed  Google Scholar 

  103. Heidel, F. et al. Results of a multicenter Phase II trial for older patients with c-Kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and Imatinib. Cancer 109, 907–914 (2007).

    CAS  PubMed  Google Scholar 

  104. Wardelmann, E. et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res. 12, 1743–1749 (2006).

    CAS  PubMed  Google Scholar 

  105. Hsueh, Y. S. et al. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors. Autophagy 9, 220–233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Boissel, N. et al. Dasatinib in high-risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial. Haematologica 100, 780–785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Levine, R. L. et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 106, 3377–3379 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Eghtedar, A. et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 119, 4614–4618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pemmaraju, N. et al. A phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 15, 171–176 (2015).

    PubMed  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  111. Rowinsky, E. K., Windle, J. J. & Von Hoff, D. D. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J. Clin. Oncol. 17, 3631–3652 (1999).

    CAS  PubMed  Google Scholar 

  112. Lancet, J. E. et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109, 1387–1394 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Erba, H. P. et al. Four different regimens of farnesyltransferase inhibitor tipifarnib in older, untreated acute myeloid leukemia patients: North American Intergroup Phase II study SWOG S0432. Leukemia Res. 38, 329–333 (2014).

    CAS  Google Scholar 

  114. Posch, C. et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl Acad. Sci. USA 110, 4015–4020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Johnson, D. B., Smalley, K. S. & Sosman, J. A. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin. Cancer Res. 20, 4186–4192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  117. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Stein, E. M. et al. The DOT1L inhibitor EPZ-5676: safety and activity in relapsed/refractory patients with MLL-rearranged leukemia [online], (2014).

    Google Scholar 

  120. Lund, K., Adams, P. D. & Copland, M. EZH2 in normal and malignant hematopoiesis. Leukemia 28, 44–49 (2014).

    CAS  PubMed  Google Scholar 

  121. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    CAS  PubMed  Google Scholar 

  122. Ohgami, R. S. et al. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod. Pathol. 28, 706–714 (2015).

    CAS  PubMed  Google Scholar 

  123. Sinha, S. et al. Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 125, 316–326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Valent, P. & Zuber, J. BRD4: a BET(ter) target for the treatment of AML? Cell Cycle 13, 689–690 (2014).

    CAS  Google Scholar 

  125. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dawson, M. A. et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 28, 311–320 (2014).

    CAS  PubMed  Google Scholar 

  127. Dombret, H. et al. A phase 1 study of the BET-bromodomain inhibitor OTX015 in patients with advanced acute leukemia [online], (2014).

    Google Scholar 

  128. Grassadonia, A. et al. Role of hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs) in the treatment of solid malignancies. Cancers 5, 919–942 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Silva, G., Cardoso, B. A., Belo, H. & Almeida, A. M. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms. PLoS ONE 8, e53766 (2013).

    CAS  Google Scholar 

  130. Schaefer, E. W. et al. A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica 94, 1375–1382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Walter, R. B. et al. Phase II trial of vorinostat and gemtuzumab ozogamicin as induction and post-remission therapy in older adults with previously untreated acute myeloid leukemia. Haematologica 97, 739–742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. U.S. Food and Drug Administration. Mylotarg (gemtuzumab ozogamicin): market withdrawal [online], (2010).

  133. Ravandi, F. et al. Gemtuzumab ozogamicin: time to resurrect? J. Clin. Oncol. 30, 3921–3923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hills, R. K. et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 15, 986–996 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  136. Tan, P. et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood Cancer J. 4, e170 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  138. Novotny-Diermayr, V. et al. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J. 2, e69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bertoli, S. et al. Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia. Blood 121, 2618–2626 (2013).

    CAS  PubMed  Google Scholar 

  140. Sekeres, M. A. et al. Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood 113, 28–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hughes, A. E. et al. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet. 10, e1004462 (2014).

    Google Scholar 

  144. Walter, M. J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Steudel, C. et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 37, 237–251 (2003).

    CAS  Google Scholar 

  146. Marcucci, G., Haferlach, T. & Dohner, H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J. Clin. Oncol. 29, 475–486 (2011).

    CAS  PubMed  Google Scholar 

  147. Schneider, F. et al. Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML). Ann. Hematol. 91, 9–18 (2012).

    CAS  PubMed  Google Scholar 

  148. Ostronoff, F. et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report. J. Clin. Oncol. 33, 1157–1164 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Gaidzik, V. I. et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 121, 4769–4777 (2013).

    CAS  PubMed  Google Scholar 

  150. Thol, F. et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J. Clin. Oncol. 29, 2889–2896 (2011).

    CAS  PubMed  Google Scholar 

  151. Ribeiro, A. F. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 119, 5824–5831 (2012).

    CAS  PubMed  Google Scholar 

  152. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Link, D. C. et al. Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood 110, 1648–1655 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Carbuccia, N. et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 24, 469–473 (2010).

    CAS  PubMed  Google Scholar 

  155. Schnittger, S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27, 82–91 (2013).

    CAS  PubMed  Google Scholar 

  156. Paschka, P. et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German–Austrian Acute Myeloid Leukemia Study Group. Haematologica 100, 324–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Metzeler, K. H. et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category. Blood 118, 6920–6929 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Dufour, A. et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J. Clin. Oncol. 28, 570–577 (2010).

    CAS  PubMed  Google Scholar 

  159. Taskesen, E. et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117, 2469–2475 (2011).

    CAS  PubMed  Google Scholar 

  160. Metzeler, K. H. et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 29, 1373–1381 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Weissmann, S. et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26, 934–942 (2012).

    CAS  PubMed  Google Scholar 

  162. Hou, H. A. et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. Blood 115, 5222–5231 (2010).

    CAS  PubMed  Google Scholar 

  163. Paschka, P. et al. Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J. Clin. Oncol. 26, 4595–4602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yamaguchi, S. et al. IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation. Eur. J. Haematol. 92, 471–477 (2014).

    CAS  PubMed  Google Scholar 

  165. Paschka, P. et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636–3643 (2010).

    CAS  PubMed  Google Scholar 

  166. Mendler, J. H. et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J. Clin. Oncol. 30, 3109–3118 (2012).

    PubMed  PubMed Central  Google Scholar 

  167. Van Vlierberghe, P. et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia 25, 130–134 (2011).

    CAS  PubMed  Google Scholar 

  168. Hou, H. A. et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 5, e331 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. Wang, X. et al. EZH2 mutations are related to low blast percentage in bone marrow and −7/del(7q) in de novo acute myeloid leukemia. PLoS ONE 8, e61341 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee, J. W. et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25, 1434–1436 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the authors made substantial contributions to researching data for article, discussion of content, and review/editing of manuscript before submission. C.C.C. wrote the manuscript.

Corresponding author

Correspondence to Ross L. Levine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coombs, C., Tallman, M. & Levine, R. Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol 13, 305–318 (2016). https://doi.org/10.1038/nrclinonc.2015.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.210

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer