Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastric cancer—molecular and clinical dimensions

Key Points

  • Globally, gastric cancer is the fourth most common cancer in men and fifth most common cancer in women

  • Helicobacter pylori is the most intriguing and best studied risk factor for sporadic gastric cancers

  • Signalling pathways and cancer stem cells have key roles in carcinogenesis and progression

  • Localized gastric cancer can be cured by primary surgery, but adjunctive therapies increase the cure rate

  • New somatic genes altered in gastric cancer (such as ARID1A, FAT4, MLL and KMT2C) have been identified, but thorough interrogation of gastric cancer is as yet incomplete

  • Therapeutic approaches that exploit the capabilities of the host immune mechanisms hold immense promise

Abstract

Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer—differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular carcinogenesis of Helicobacter pylori in gastric cancer.
Figure 2: microRNA targets and functions in gastric cancer.
Figure 3: Targeted therapy in gastric cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. National Cancer Institute at the National Institutes of Health. Cellular Classification of Gastric Cancer [online], (2013).

  3. Bertuccio, P. et al. Recent patterns in gastric cancer: a global overview. Int. J. Cancer 125, 666–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J., Bu, X. L., Wang, Q. Y., Hu, P. J. & Chen, M. H. Decreasing seroprevalence of Helicobacter pylori infection during 1993–2003 in Guangzhou, southern China. Helicobacter 12, 164–169 (2007).

    Article  PubMed  Google Scholar 

  5. Kawakami, E., Machado, R. S., Ogata, S. K. & Langner, M. Decrease in prevalence of Helicobacter pylori infection during a 10-year period in Brazilian children. Arq. Gastroenterol. 45, 147–151 (2008).

    Article  PubMed  Google Scholar 

  6. Tkachenko, M. A. et al. Dramatic changes in the prevalence of Helicobacter pylori infection during childhood: a 10-year follow-up study in Russia. J. Pediatr. Gastroenterol. Nutr. 45, 428–432 (2007).

    Article  PubMed  Google Scholar 

  7. Lee, K. J. et al. Gastric cancer screening and subsequent risk of gastric cancer: a large-scale population-based cohort study, with a 13-year follow-up in Japan. Int. J. Cancer 118, 2315–2321 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Axon, A. Review article: gastric cancer and Helicobacter pylori. Aliment. Pharmacol. Ther. 16 (Suppl. 4), 83–88 (2002).

    Article  PubMed  Google Scholar 

  10. Kim, S. S., Ruiz, V. E., Carroll, J. D. & Moss, S. F. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 305, 228–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Conteduca, V. et al. H. pylori infection and gastric cancer: state of the art (review). Int. J. Oncol. 42, 5–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Rizzato, C. et al. Risk of advanced gastric precancerous lesions in Helicobacter pylori infected subjects is influenced by ABO blood group and cagA status. Int. J. Cancer 133, 315–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Correa, P. & Houghton, J. Carcinogenesis of Helicobacter pylori. Gastroenterology 133, 659–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tsugawa, H. et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 12, 764–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Pimentel-Nunes, P. et al. Helicobacter pylori induces increased expression of Toll-like receptors and decreased toll-interacting protein in gastric mucosa that persists throughout gastric carcinogenesis. Helicobacter 18, 22–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Peek, R. M. Jr et al. Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J. Natl Cancer Inst. 89, 863–868 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Graham, D. Y. & Yamaoka, Y. H. pylori and cagA: relationships with gastric cancer, duodenal ulcer, and reflux esophagitis and its complications. Helicobacter 3, 145–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Hatakeyama, M. Helicobacter pylori cagA—a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect. 5, 143–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Mueller, D. et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J. Clin. Invest. 122, 1553–1566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Müller, A. Multistep activation of the Helicobacter pylori effector CagA. J. Clin. Invest. 122, 1192–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Meyer-ter-Vehn, T., Covacci, A., Kist, M. & Pahl, H. L. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem. 275, 16064–16072 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Schirrmeister, W. et al. Ectodomain shedding of E-cadherin and c-Met is induced by Helicobacter pylori infection. Exp. Cell Res. 315, 3500–3508 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Murata-Kamiya, N. et al. Helicobacter pylori cagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26, 4617–4626 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, M. et al. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J. Exp. Med. 202, 1235–1247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatakeyama, M. Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor cagA. Oncogene 27, 7047–7054 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Bartchewsky, W. Jr et al. Effect of Helicobacter pylori infection on IL-8, IL-1β and COX-2 expression in patients with chronic gastritis and gastric cancer. Scand. J. Gastroenterol. 44, 153–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Li, C. Q., Pignatelli, B. & Ohshima, H. Coexpression of interleukin-8 and inducible nitric oxide synthase in gastric mucosa infected with cagA+ Helicobacter pylori. Dig. Dis. Sci. 45, 55–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Suganuma, M. et al. TNF-α-inducing protein, a carcinogenic factor secreted from H. pylori, enters gastric cancer cells. Int. J. Cancer 123, 117–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Brandt, S., Kwok, T., Hartig, R., Konig, W. & Backert, S. NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori cagA protein. Proc. Natl Acad. Sci. USA 102, 9300–9305 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Rad, R. et al. Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa. J. Infect. Dis. 188, 272–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zambon, C. F. et al. Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome. Cytokine 29, 141–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, Y. J. et al. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-κB activation. Mol. Pharmacol. 66, 1465–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Walduck, A. K. et al. Identification of novel cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo. Mol. Cancer 8, 22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seo, J. H., Kim, H. & Kim, K. H. Cyclooxygenase-2 expression by transcription factors in Helicobacter pylori-infected gastric epithelial cells: comparison between HP 99 and NCTC 11637. Ann. NY Acad. Sci. 973, 477–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, A. Q., Ge, L. Y., Ye, X. Q., Luo, X. L. & Luo, Y. Reduced FAF1 expression and Helicobacter infection: correlations with clinicopathological features in gastric cancer. Gastroenterol. Res. Pract. 2012, 153219 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. Wang, G. et al. Involvement of aquaporin 3 in Helicobacter pylori-related gastric diseases. PLoS ONE 7, e49104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura, G. et al. E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J. Natl Cancer Inst. 92, 569–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Becker, K. F. & Höfler, H. Frequent somatic allelic inactivation of the E-cadherin gene in gastric carcinomas. J. Natl Cancer Inst. 87, 1082–1084 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Peterson, A. J. et al. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139, 2005–2017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katayama, Y., Takahashi, M. & Kuwayama, H. Helicobacter pylori causes RUNX3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem. Biophys. Res. Commun. 388, 496–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida, T. et al. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis. Gastric Cancer http://dx.doi.org/10.1007/s10120-012-0230-x.

  43. Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13, 470–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Holcombe, C. Helicobacter pylori: the African enigma. Gut 33, 429–431 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Huntsman, D. G. et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N. Engl. J. Med. 344, 1904–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hu, Z., Ajani, J. A. & Wei, Q. Molecular epidemiology of gastric cancer: current status and future prospects. Gastrointest. Cancer Res. 1, 12–19 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Wang, L. D. et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat. Genet. 42, 759–763 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Study Group of Millennium Genome Project for Cancer. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet. 40, 730–740 (2008).

  50. Wang, T., Zhang, L., Li, H., Wang, B. & Chen, K. Prostate stem cell antigen polymorphisms and susceptibility to gastric cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 843–850 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Saeki, N., Gu, J., Yoshida, T. & Wu, X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin. Cancer Res. 16, 3533–3538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Abnet, C. C. et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet. 42, 764–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, H. et al. Genetic variants at 1q22 and 10q23 reproducibly associated with gastric cancer susceptibility in a Chinese population. Carcinogenesis 32, 848–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, M. et al. Potentially functional variants of PLCE1 identified by GWASs contribute to gastric adenocarcinoma susceptibility in an eastern Chinese population. PLoS ONE 7, e31932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, D. et al. Genetic variation in PLCE1 is associated with gastric cancer survival in a Chinese population. J. Gastroenterol. 46, 1260–1266 (2011).

    Article  PubMed  Google Scholar 

  56. Palmer, A. J. et al. Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur. J. Cancer Prev. 21, 541–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi, Y. et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat. Genet. 43, 1215–1218 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, K. C. et al. Molecular basis of therapeutic approaches to gastric cancer. J. Gastroenterol. Hepatol. 24, 37–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Wong, H. & Yau, T. Targeted therapy in the management of advanced gastric cancer: are we making progress in the era of personalized medicine? Oncologist 17, 346–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schneider, B. G. et al. Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. Int. J. Cancer 127, 2588–2597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Markman, B., Dienstmann, R. & Tabernero, J. Targeting the PI3K/Akt/mTOR pathway—beyond rapalogs. Oncotarget 1, 530–543 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chalhoub, N. & Baker, S. J. PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol. 4, 127–150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergfeld, S. A. & DeClerck, Y. A. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 29, 249–261 (2010).

    Article  PubMed  Google Scholar 

  64. Takaishi, S., Okumura, T. & Wang, T. C. Gastric cancer stem cells. J. Clin. Oncol. 26, 2876–2882 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, C. N. et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J. Clin. Oncol. 23, 7286–7295 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Cho, J. Y. et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin. Cancer Res. 17, 1850–1857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deng, N. et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61, 673–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ivanova, T. et al. Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut 62, 22–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, H. K. et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS ONE 6, e16694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, H. K. et al. Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy. Pharmacogenomics J. 12, 119–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Ooi, C. H. et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 5, e1000676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takeno, A. et al. Gene expression profile prospectively predicts peritoneal relapse after curative surgery of gastric cancer. Ann. Surg. Oncol. 17, 1033–1042 (2010).

    Article  PubMed  Google Scholar 

  73. Tan, I. B. et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141, 476–485 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu, Y. et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut 26, 1100–1111 (2013).

    Article  CAS  Google Scholar 

  75. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 4, 156ra140 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Tan, D. S., Gerlinger, M., Teh, B. T. & Swanton, C. Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur. J. Cancer 46, 2166–2177 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Subramaniam, D., Ramalingam, S., Houchen, C. W. & Anant, S. Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Rev. Med. Chem. 10, 359–371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peacock, C. D. & Watkins, D. N. Cancer stem cells and the ontogeny of lung cancer. J. Clin. Oncol. 26, 2883–2889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Voutsadakis, I. A. The ubiquitin-proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J. Biomed. Sci. 19, 67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Y. Q. et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc. Natl Acad. Sci. USA 108, 9951–9956 (2011).

    Article  PubMed  Google Scholar 

  84. Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Bierie, B. & Moses, H. L. TGFβ: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Watabe, T. & Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 19, 103–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, J. B. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA 104, 16158–16163 (2007).

    Article  PubMed  Google Scholar 

  89. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh, B. N., Fu, J., Srivastava, R. K. & Shankar, S. Hedgehog signaling antagonist GDC-0449 (vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS ONE 6, e27306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Heindl, S. et al. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines. J. Cancer Res. Clin. Oncol. 138, 843–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Komuro, A. et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J. Natl Cancer Inst. 101, 592–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ebi, M., Kataoka, H., Higashiyama, S. & Joh, T. TGFβ induces EGFR transactivation and HB-EGF C-terminal fragment nuclear translocation through ADAM17 activation in gastric cancer cells. Gastroenterology 140 (Suppl. 1), S629 (2011).

    Article  Google Scholar 

  94. Kang, M. H. et al. Inhibition of PI3 kinase/Akt pathway is required for BMP2-induced EMT and invasion. Oncol. Rep. 22, 525–534 (2009).

    CAS  PubMed  Google Scholar 

  95. Takahashi, Y. et al. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin. Cancer Res. 2, 1679–1684 (1996).

    CAS  PubMed  Google Scholar 

  96. Sharma, V. K., Vasudeva, R. & Howden, C. W. Changing demographics of gastric cancer: 15 year experience. Gastroenterology 114 (Suppl. 1), A40 (1998).

    Google Scholar 

  97. Takaishi, S. et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006–1020 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ishimoto, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19, 387–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Fornaro, L. et al. Anti-HER agents in gastric cancer: from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 8, 369–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306, 1506–1507 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Dhanasekaran, D. N. & Johnson, G. L. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26, 3097–3099 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Lordick, F. et al. HER2 status of advanced gastric cancer is similar in Europe and Asia [abstract 253]. Ann. Oncol. 18 (Suppl. 7), vii95–vii96 (2007).

    Google Scholar 

  103. Zhang, X. L. et al. Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J. Surg. 33, 2112–2118 (2009).

    Article  PubMed  Google Scholar 

  104. Terashima, M. et al. Impact of expression of human epidermal growth factor receptors EGFR and ERBB2 on survival in stage II/III gastric cancer. Clin. Cancer Res. 18, 5992–6000 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Browne, B. C. et al. Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann. Oncol. 22, 68–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Wilkinson, N. W. et al. Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. J. Gastrointest. Surg. 8, 448–453 (2004).

    Article  PubMed  Google Scholar 

  107. Isinger-Ekstrand, A. et al. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array-comparative genomic hybridization. Cancer Genet. Cytogenet. 200, 120–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Moutinho, C. et al. Epidermal growth factor receptor structural alterations in gastric cancer. BMC Cancer 8, 10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, Z. M. et al. Epidermal growth factor receptor mutation in gastric cancer. Pathology 43, 234–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Pinto, C. et al. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study). Br. J. Cancer 101, 1261–1268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jaiswal, B. S. et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell 23, 603–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Migliore, C. & Giordano, S. Molecular cancer therapy: can our expectation be MET? Eur. J. Cancer 44, 641–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. El-Rifai, W. & Powell, S. M. Molecular biology of gastric cancer. Semin. Radiat. Oncol. 12, 128–140 (2002).

    Article  PubMed  Google Scholar 

  114. Smolen, G. A. et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl Acad. Sci. USA 103, 2316–2321 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Janjigian, Y. Y. et al. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol. Biomarkers Prev. 20, 1021–1027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, J. et al. Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol. Rep. 25, 1517–1524 (2011).

    CAS  PubMed  Google Scholar 

  117. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008).

    Article  PubMed  Google Scholar 

  118. Arteaga, C. L. HER3 and mutant EGFR meet MET. Nat. Med. 13, 675–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Corso, S., Comoglio, P. M. & Giordano, S. Cancer therapy: can the challenge be MET? Trends Mol. Med. 11, 284–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Corso, S. et al. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol. Cancer 9, 121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bachleitner-Hofmann, T. et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol. Cancer Ther. 7, 3499–3508 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Byun, D. S. et al. Frequent monoallelic deletion of PTEN and its reciprocal association with PIK3CA amplification in gastric carcinoma. Int. J. Cancer 104, 318–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Oki, E. et al. Impact of PTEN/AKT/PI3K signal pathway on the chemotherapy for gastric cancer [abstract 4034]. J. Clin. Oncol. 24 (Suppl. 18), 187s (2006).

    Google Scholar 

  124. Garrett, J. T. et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc. Natl Acad. Sci. USA 108, 5021–5026 (2011).

    Article  PubMed  Google Scholar 

  125. Shin, E. Y. et al. Up-regulation and co-expression of fibroblast growth factor receptors in human gastric cancer. J. Cancer Res. Clin. Oncol. 126, 519–528 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Song, S. & Ajani, J. A. The role of microRNAs in cancers of the upper gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 10, 109–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Li, T. et al. MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1. Oncogene http://dx.doi.org/10.1038/onc.2012.637.

  129. Wang, M. et al. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J. Gastroenterol. http://dx.doi.org/10.1007/s00535-012-0733–6.

  130. Wang, M. et al. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Eur. J. Cancer 49, 2010–2021 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Wu, X. et al. MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Prev. Res. (Phila.) 6, 196–205 (2013).

    Article  CAS  Google Scholar 

  132. Zhou, C. et al. microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells. Int. J. Oncol. 42, 635–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Zhi, Q. et al. Oncogenic miR-544 is an important molecular target in gastric cancer. Anticancer Agents Med. Chem. 13, 270–275 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, Y. Y. et al. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol. 44, 1278–1285 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Deng, H. et al. MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene 518, 351–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Wen, D. et al. miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol. 34, 793–803 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Saito, Y. et al. The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells. Int. J. Cancer 132, 1751–1760 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Cao, W. et al. Expression and regulatory function of miRNA-34a in targeting survivin in gastric cancer cells. Tumour Biol. 34, 963–971 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Zheng, L. et al. miRNA-145 targets v-ets erythroblastosis virus E26 oncogene homolog 1 to suppress the invasion, metastasis, and angiogenesis of gastric cancer cells. Mol. Cancer Res. 11, 182–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, K. et al. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer. World J. Surg. Oncol. 10, 225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Akiyoshi, S. et al. Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br. J. Cancer 107, 1345–1353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. He, X. P. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J. 279, 4201–4212 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Crone, S. G. et al. microRNA-146a inhibits G. protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Mol. Cancer 11, 71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ichikawa, D., Komatsu, S., Konishi, H. & Otsuji, E. Circulating microRNA in digestive tract cancers. Gastroenterology 142, 1074–1078.e1 (2012).

    Article  PubMed  Google Scholar 

  145. Cui, L. et al. Gastric juice microRNAs as potential biomarkers for the screening of gastric cancer. Cancer 119, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, X. et al. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. 33, 2349–2355 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Cai, H. et al. Plasma microRNAs serve as novel potential biomarkers for early detection of gastric cancer. Med. Oncol. 30, 452 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Li, C. et al. MiRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann. Surg. Oncol. http://dx.doi.org/10.1245/s10434-012-2600–3.

  149. Wang, M. et al. Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol. Med. Report 5, 1514–1520 (2012).

    Article  CAS  Google Scholar 

  150. Valladares-Ayerbes, M. et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med. 10, 186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stern, H. M. Improving treatment of HER2-positive cancers: opportunities and challenges. Sci. Transl. Med. 4, 127rv2 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Nahta, R. Molecular mechanisms of trastuzumab-based treatment in HER2-overexpressing breast cancer. ISRN Oncol. 2012, 428062 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. Kim, J. W. et al. The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett. 272, 296–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Lu, Y., Zi, X. & Pollak, M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int. J. Cancer 108, 334–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, C. T. et al. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther. 11, 660–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shattuck, D. L., Miller, J. K., Carraway, K. L. & Sweeney, C. Met receptor contributes to trastuzumab resistance of HER2-overexpressing breast cancer cells. Cancer Res. 68, 1471–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Molina, M. A. et al. Trastuzumab (herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res. 61, 4744–4749 (2001).

    CAS  PubMed  Google Scholar 

  158. Nagy, P. et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-Expressing breast cancer cell line. Cancer Res. 65, 473–482 (2005).

    CAS  PubMed  Google Scholar 

  159. Gong, S. J., Jin, C. J., Rha, S. Y. & Chung, H. C. Growth inhibitory effects of trastuzumab and chemotherapeutic drugs in gastric cancer cell lines. Cancer Lett. 214, 215–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Arcaro, A. & Guerreiro, A. S. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr. Genomics 8, 271–306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Korkaya, H. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shah, M. A. & Ajani, J. A. Gastric cancer—an enigmatic and heterogeneous disease. JAMA 303, 1753–1754 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Bickenbach, K. & Strong, V. E. Comparisons of gastric cancer treatments: East vs West. J. Gastric Cancer 12, 55–62 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tamura, S., Takeno, A. & Miki, H. Lymph node dissection in curative gastrectomy for advanced gastric cancer. Int. J. Surg. Oncol. 2011, 748745 (2011).

    PubMed  PubMed Central  Google Scholar 

  167. Macdonald, J. S. et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med. 345, 725–730 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Bang, Y. J. et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 379, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Ajani, J. A. et al. Gastric cancer. J. Natl Compr. Canc. Netw. 8, 378–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Lim, L., Michael, M., Mann, G. B. & Leong, T. Adjuvant therapy in gastric cancer. J. Clin. Oncol. 23, 6220–6232 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Ychou, M. et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 29, 1715–1721 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Paoletti, X. et al. Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA 303, 1729–1737 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Cunningham, D. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355, 11–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Smalley, S. R. et al. Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J. Clin. Oncol. 30, 2327–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fuchs, C. S. et al. Postoperative adjuvant chemoradiation for gastric or gastroesophageal junction (GEJ) adenocarcinoma using epirubicin, cisplatin, and infusional (CI) 5-FU (ECF) before and after CI 5-FU and radiotherapy (CRT) compared with bolus 5-FU/LV before and after CRT: Intergroup trial CALGB 80101 [abstract 4003]. J. Clin. Oncol. 29 (Suppl.), 4003 (2011).

    Article  Google Scholar 

  177. Lee, J. et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J. Clin. Oncol. 30, 268–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Sasako, M. et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol. 29, 4387–4393 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Dikken, J. L. et al. Neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy for patients with resectable gastric cancer (CRITICS). BMC Cancer 11, 329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Van Cutsem, E. et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J. Clin. Oncol. 24, 4991–4997 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Koizumi, W. et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 9, 215–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. FDA. Trastuzumab. Office of Medical Products and Tobacco [online], (2010).

  184. Lordick, F. et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 14, 490–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Waddell, T. et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 14, 481–489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ohtsu, A. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 29, 3968–3976 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Van Cutsem, E. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J. Clin. Oncol. 30, 2119–2127 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Ajani, J. A. et al. Multicenter phase III comparison of cisplatin/S-1 with cisplatin/infusional fluorouracil in advanced gastric or gastroesophageal adenocarcinoma study: the FLAGS trial. J. Clin. Oncol. 28, 1547–1553 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Thuss-Patience, P. C. et al. Survival advantage for irinotecan versus best supportive care as second-line chemotherapy in gastric cancer--a randomised phase III study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Eur. J. Cancer 47, 2306–2314 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  191. Everolimus for advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J. Clin. Oncol. (in press).

  192. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  193. Fuchs, C. S. et al. REGARD: a phase III, randomized, double-blind trial of ramucirumab and best supportive care (BSC) versus placebo and BSC in the treatment of metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma following disease progression on first-line platinum- and/or fluoropyrimidine-containing combination therapy [abstract LBA5]. J. Clin. Oncol. 30 (Suppl. 34), LBA5 (2012).

    Google Scholar 

  194. Ford, H. et al. Cougar-02: a randomized phase III study of docetaxel versus active symptom control in advanced esophagogastric adenocarcinoma [abstract LBA4]. J. Clin. Oncol. 30 (Suppl. 34), LBA4 (2012).

    Google Scholar 

  195. Bang, Y.-J. et al. A randomized, open-label, phase III study of lapatinib in combination with weekly paclitaxel versus weekly paclitaxel alone in the second-line treatment of HER2 amplified advanced gastric cancer (AGC) in Asian population: Tytan study [abstract 11]. J. Clin. Oncol. 30 (Suppl. 34), 11 (2012).

    Article  Google Scholar 

  196. Lennerz, J. K. et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J. Clin. Oncol. 29, 4803–4810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Oliner, K. S. et al. Evaluation of MET pathway biomarkers in a phase II study of rilotumumab (R, AMG 102) or placebo (P) in combination with epirubicin, cisplatin, and capecitabine (ECX) in patients (pts) with locally advanced or metastatic gastric (G) or esophagogastric junction (EGJ) cancer [abstract 4005]. J. Clin. Oncol. 30 (Suppl.), 4005 (2012).

    Google Scholar 

  198. Hwang, J. Y. et al. Recapitulation of previous genome-wide association studies with two distinct pathophysiological entities of gastric cancer in the Korean population. J. Hum. Genet. 58, 233–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Saeki, N. et al. A functional single nucleotide polymorphism in mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology 140, 892–902 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Gu, H. et al. Replication study of PLCE1 and C20orf54 polymorphism and risk of esophageal cancer in a Chinese population. Mol. Biol. Rep. 39, 9105–9111 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Mammano, E. et al. Epidermal growth factor receptor (EGFR): mutational and protein expression analysis in gastric cancer. Anticancer Res. 26, 3547–3550 (2006).

    CAS  PubMed  Google Scholar 

  202. Hong, S. P. et al. Overexpression of Notch 1 signaling associates with the tumorigenesis of gastric adenorna and intestinal type of gastric cancer. Gastroenterology 132, A617 (2007).

    Google Scholar 

  203. Yu, G. Z. et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin. Cancer Res. 15, 1821–1829 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Lang, S. A. et al. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Int. J. Cancer 120, 1803–1810 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Zhou, Y. N. et al. Clinicopathological significance of E-cadherin, VEGF, and MMPs in gastric cancer. Tumor Biol. 31, 549–558 (2010).

    Article  CAS  Google Scholar 

  206. Kitoh, T. et al. Increased expression of matrix metalloproteinase-7 in invasive early gastric cancer. J. Gastroenterol. 39, 434–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Fukaya, M. et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131, 14–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Hattori, Y. et al. Immunohistochemical detection of K-sam protein in stomach cancer. Clin. Cancer Res. 2, 1373–1381 (1996).

    CAS  PubMed  Google Scholar 

  209. Pereira, P. S. et al. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum. Mol. Genet. 15, 1704–1712 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Kobayashi, M., Kawashima, A., Mai, M. & Ooi, A. Analysis of chromosome 17p13 (p53 locus) alterations in gastric carcinoma cells by dual-color fluorescence in situ hybridization. Am. J. Pathol. 149, 1575–1584 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Guo, C. Y., Xu, X. F., Wu, L. Y. & Liu, S. F. PCR-SSCP-DNA sequencing method in detecting PTEN gene mutation and its significance in human gastric cancer. World J. Gastroenterol. 14, 3804–3811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Li, H. et al. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer 117, 3135–3147 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Cepero, V. et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 70, 7580–7590 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Fuchs, C. et al. Postoperative adjuvant chemoradiation for gastric or gastroesophageal adenocarcinoma using epirubicin, cisplatin, and infusional (CI) 5-FU (ECF) before and after CI 5-FU and radiotherapy (RT): Interim toxicity results from Intergroup trial CALGB 80101 [abtract 4003]. J. Clin. Oncol. 29 (Suppl.), 4003 (2011).

    Article  Google Scholar 

  215. Tsuburaya, A. et al. SAMIT: Preliminary safety data from a 2 × 2 factorial randomized phase III trial to investigate weekly paclitaxel (PTX) followed by oral fluoropyrimidines (FPs) versus FPs alone as adjuvant chemotherapy in patients (pts) with gastric cancer [abstract 4017]. J. Clin. Oncol. 29 (Suppl.), 4017 (2011).

    Article  Google Scholar 

  216. Leong, T. L. et al. TOPGEAR: An international randomized phase III trial of preoperative chemoradiotherapy versus preoperative chemotherapy for resectable gastric cancer (AGITG/TROG/EORTC/NCIC CTG) [abstract TPS4141]. J. Clin. Oncol. 30 (Suppl.), TPS4141 (2012).

    Google Scholar 

  217. Lordick, F. et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 14, 490–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  219. Waddell, T. S. et al. A randomized, multicenter trial of epirubicin, oxaliplatin, and capecitabine (EOC) plus panitumumab in advanced esophagogastric cancer (REAL3) [abstract LBA4000]. J. Clin. Oncol. 30 (Suppl.), LBA4000 (2012).

    Article  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  221. Kang, J. H. et al. Salvage chemotherapy for pretreated gastric cancer: a randomized phase III trial comparing chemotherapy plus best supportive care with best supportive care alone. J. Clin. Oncol. 30, 1513–1518 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov [online], (2009).

Download references

Acknowledgements

The authors are supported by grants from the Caporella, Cantu, Smith, Park, Fairman, Frazier, Sultan, Oaks, Vansteklenberg and Milrod families, by the Kevin Fund, Schecter Private Fund and the Rivercreek Foundation and a Multidisciplinary Research Grant from University of Texas MD Anderson Cancer Center. J. A. Ajani is also supported by grants RO1CA138671 and ROaCA172741 awarded by the National Cancer Institute, Bethesda, MD, USA. The authors also thank the editorial staff of Nature Reviews Clinical Oncology for their editorial assistance in considerably improving the clarity and organization of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the article's content, wrote the manuscript and edited it before submission.

Corresponding author

Correspondence to Jaffer A. Ajani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadhwa, R., Song, S., Lee, JS. et al. Gastric cancer—molecular and clinical dimensions. Nat Rev Clin Oncol 10, 643–655 (2013). https://doi.org/10.1038/nrclinonc.2013.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.170

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer