Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early stage gastric adenocarcinoma: clinical and molecular landscapes

Abstract

Gastric adenocarcinoma, even when diagnosed at an early (localized) disease stage, poses a major health-care burden with cure rates that remain unsatisfactorily low, particularly in Western countries. This lack of progress reflects, among other aspects, the impracticality of early diagnosis, considerable variations in therapeutic approaches that is partly based on regional preferences, and the ingrained heterogeneity of gastric adenocarcinoma cells and their associated tumour microenvironment (TME). Clinical trials have long applied empirical interventions with the assumption that all early stage gastric adenocarcinomas are alike. Despite certain successes, the shortcomings of these approaches can potentially be overcome by targeting the specific molecular subsets of gastric adenocarcinomas identified by genomic and/or multi-omics analyses, including microsatellite instability-high, Epstein–Barr virus-induced, DNA damage repair-deficient, HER2-positive and PD-L1-high subtypes. Future approaches, including the availability of sophisticated vaccines, novel antibody technologies, agents targeting TME components (including fibroblasts, macrophages, cytokines or chemokines, and T cells) and novel immune checkpoint inhibitors, supported by improved tissue-based and blood-based diagnostic assays, seem promising. In this Review, we highlight current knowledge of the molecular and cellular biology of gastric adenocarcinomas, summarize the current approaches to clinical management of the disease, and consider the role of novel management and/or treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alterations and potential targets involving the RAS and/or PI3K–AKT–mTOR signalling pathways in localized gastric adenocarcinomas.
Fig. 2: Deregulated cancer stemness pathways and putative targeted therapy strategies in patients with localized gastric adenocarcinoma.
Fig. 3: The interplay of tumour cells, cancer-associated fibroblasts and macrophages in the gastric adenocarcinoma TME.
Fig. 4: Western and Asian treatment algorithms.
Fig. 5: Surgical procedures for gastric cancer.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Parkin, D. M. Global cancer statistics in the year 2000. Lancet Oncol. 2, 533–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Cats, A. et al. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial. Lancet Oncol. 19, 616–628 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Bonenkamp, J. J. et al. Randomised comparison of morbidity after D1 and D2 dissection for gastric cancer in 996 Dutch patients. Lancet 345, 745–748 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bang, Y.-J. et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 379, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Correa, P., Cuello, C. & Duque, E. Carcinoma and intestinal metaplasia of the stomach in Colombian migrants. J. Natl Cancer Inst. 44, 297–306 (1970).

    CAS  PubMed  Google Scholar 

  8. Henson, D. E., Dittus, C., Younes, M., Nguyen, H. & Albores-Saavedra, J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch. Pathol. Lab. Med. 128, 765–770 (2004).

    Article  PubMed  Google Scholar 

  9. Ajani, J. A. et al. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 167–192 (2022).

    Article  CAS  Google Scholar 

  10. Ajani, J. A. et al. Gastric adenocarcinoma. Nat. Rev. Dis. Prim. 3, 17036 (2017).

    Article  PubMed  Google Scholar 

  11. Sasako, M. Progress in the treatment of gastric cancer in Japan over the last 50 years. Ann. Gastroenterol. Surg. 4, 21–29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pabla, B. S., Shah, S. C., Corral, J. E. & Morgan, D. R. Increased incidence and mortality of gastric cancer in immigrant populations from high to low regions of incidence: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 18, 347–359.e5 (2020).

    Article  PubMed  Google Scholar 

  13. Etemadi, A. et al. The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol. Hepatol. 5, 42–54 (2020).

    Article  Google Scholar 

  14. Hamashima, C. et al. A community-based, case-control study evaluating mortality reduction from gastric cancer by endoscopic screening in Japan. PLoS ONE 8, e79088 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jun, J. K. et al. Effectiveness of the Korean national cancer screening program in reducing gastric cancer mortality. Gastroenterology 152, 1319–1328.e7 (2017).

    Article  PubMed  Google Scholar 

  16. Inoue, M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer 20, 3–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article  PubMed  Google Scholar 

  18. de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020).

    Article  PubMed  Google Scholar 

  19. Gonzalez, C. A. et al. Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project. Ann. Oncol. 23, 1320–1324 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Okuda, M. et al. Low prevalence and incidence of Helicobacter pylori infection in children: a population-based study in Japan. Helicobacter 20, 133–138 (2015).

    Article  PubMed  Google Scholar 

  21. Sipponen, P., Kekki, M. & Siurala, M. Atrophic chronic gastritis and intestinal metaplasia in gastric carcinoma. Comparison with a representative population sample. Cancer 52, 1062–1068 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Song, P., Wu, L. & Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 7, 9872–9895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, X. et al. Landscape of dietary factors associated with risk of gastric cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Cancer 51, 2820–2832 (2015).

    Article  PubMed  Google Scholar 

  24. Lagergren, J. et al. Marital status, education, and income in relation to the risk of esophageal and gastric cancer by histological type and site. Cancer 122, 207–212 (2016).

    Article  PubMed  Google Scholar 

  25. Wu, A. H., Tseng, C. C. & Bernstein, L. Hiatal hernia, reflux symptoms, body size, and risk of esophageal and gastric adenocarcinoma. Cancer 98, 940–948 (2003).

    Article  PubMed  Google Scholar 

  26. Camargo, M. C. et al. Divergent trends for gastric cancer incidence by anatomical subsite in US adults. Gut 60, 1644–1649 (2011).

    Article  PubMed  Google Scholar 

  27. Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blair, V. R. et al. Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncol. 21, e386–e397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gamble, L. A., Heller, T. & Davis, J. L. Hereditary diffuse gastric cancer syndrome and the role of CDH1: a review. JAMA Surg. 156, 387–392 (2021).

    Article  PubMed  Google Scholar 

  30. Ooi, C. H. et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000676 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. The Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  32. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Zeng, D. et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7, 737–750 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, M. et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 70, 464–475 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, J. et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis. Oncol. 6, 9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670–691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sathe, A. et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin. Cancer Res. 26, 2640–2653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, P. et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep. 27, 1934–1947.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, K. et al. Single-cell RNA sequencing of immune cells in gastric cancer patients. Aging 12, 2747–2763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, X. et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics 12, 620–638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia, L. et al. Single-cell profiling of infiltrating B cells and tertiary lymphoid structures in the TME of gastric adenocarcinomas. Oncoimmunology 10, 1969767 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. cBioPortal. Queried genes KRAS. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=KRAS&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  44. cBioPortal. Queried genes ERBB2. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=ERBB2&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  45. cBioPortal. Queried genes CHEK1, CHEK2 & 10 other genes. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=CHEK1%2520CHEK2%2520RAD51%2520BRCA1%2520BRCA2%2520MLH1%2520MSH2%2520ATM%2520ATR%2520MDC1%2520PARP1%2520FANCF&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  46. Wong, G. S. et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med. 24, 968–977 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Chung, H. C. et al. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol. 17, 491–501 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Oh, D. Y. & Bang, Y. J. HER2-targeted therapies – a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet 396, 635–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Safran, H. P. et al. Trastuzumab with trimodality treatment for oesophageal adenocarcinoma with HER2 overexpression (NRG Oncology/RTOG 1010): a multicentre, randomised, phase 3 trial. Lancet Oncol. 23, 259–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moelans, C. B., Milne, A. N., Morsink, F. H., Offerhaus, G. J. A. & Van Diest, P. J. Low frequency of HER2 amplification and overexpression in early onset gastric cancer. Cell. Oncol. 34, 89–95 (2011).

    Article  CAS  Google Scholar 

  54. Joshi, S. S. & Badgwell, B. D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 71, 264–279 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peng, Z. et al. Efficacy and safety of a novel anti‐HER2 therapeutic antibody RC48 in patients with HER2‐overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single‐arm phase II study. Cancer Commun. 41, 1173–1182 (2021).

    Article  Google Scholar 

  56. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Janjigian, Y. Y. et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 600, 727–730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. cBioPortal. Queried genes PIK3CA, PIK3R1 & 15 other genes. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=PIK3CA%2520PIK3R1%2520PIK3R2%2520PTEN%2520PDPK1%2520AKT1%2520AKT2%2520FOXO1%2520FOXO3%2520MTOR%2520RICTOR%2520TSC1%2520TSC2%2520RHEB%2520AKT1S1%2520RPTOR%2520MLST8&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  59. Mitani, S. & Kawakami, H. Emerging targeted therapies for HER2 positive gastric cancer that can overcome trastuzumab resistance. Cancers https://doi.org/10.3390/cancers12020400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wheeler, D. A. et al. Molecular features of cancers exhibiting exceptional responses to treatment. Cancer Cell 39, 38–53.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Bei, S. et al. Inhibition of gastric cancer cell growth by a PI3K-mTOR dual inhibitor GSK1059615. Biochem. Biophys. Res. Commun. 511, 13–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Mishra, R., Patel, H., Alanazi, S., Kilroy, M. K. & Garrett, J. T. PI3K inhibitors in cancer: clinical implications and adverse effects. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22073464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Moroishi, T., Hansen, C. G. & Guan, K. L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, S. et al. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74, 4170–4182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, S. et al. A novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol. Cancer Ther. 17, 443–454 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Ajani, J. A. et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut https://doi.org/10.1136/gutjnl-2019-319748 (2020).

    Article  PubMed  Google Scholar 

  68. cBioPortal. Queried genes FAT, FAT2 and 8 other genes. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=FAT1%252C%2520FAT2%252C%2520FAT3%252C%2520FAT4%252C%2520NF1%252C%2520NF2%252C%2520MST1%252C%2520STK3%252C%2520LATS1%252C%2520LATS2&geneset_list=%20&tab_index=tab_visualize&ActionSubmit (2018).

  69. Kaneda, A. et al. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein–protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Am. J. Cancer Res. 10, 4399–4415 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ni, X. et al. YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov. 8, 1026–1043 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stampouloglou, E. et al. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 18, e3000591 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Koushyar, S., Powell, A. G., Vincan, E. & Phesse, T. J. Targeting Wnt signaling for the treatment of gastric cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21113927 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cbioportal. Queried genes APC, CTNNB1 & CREBBP. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=APC%252C%2520CTNNB1%252C%2520CREBBP&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  74. Astudillo, P. Wnt5a signaling in gastric cancer. Front. Cell Dev. Biol. 8, 110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. cBioPortal. Queried genes ADAM1, ADAM17 & 53 other genes. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=ADAM10%2520ADAM17%2520APH1A%2520APH1B%2520ARRDC1%2520CIR1%2520CTBP1%2520CTBP2%2520CUL1%2520DLL1%2520DLL3%2520DLL4%2520DTX1%2520DTX2%2520DTX3%2520DTX3L%2520DTX4%2520EP300%2520FBXW7%2520HDAC1%2520HDAC2%2520HES1%2520HES5%2520HEYL%2520ITCH%2520JAG1%2520JAG2%2520KDM5A%2520LFNG%2520MAML1%2520MAML2%2520MAML3%2520MFNG%2520NCOR2%2520NCSTN%2520NOTCH1%2520NOTCH2%2520NOTCH3%2520NOTCH4%2520NRARP%2520NUMB%2520NUMBL%2520PSEN1%2520PSEN2%2520PSENEN%2520RBPJ%2520RBPJL%2520RFNG%2520SNW1%2520SPEN%2520HES2%2520HES4%2520HES7%2520HEY1%2520HEY2&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  76. Kang, H. et al. Notch3 and Jagged2 contribute to gastric cancer development and to glandular differentiation associated with MUC2 and MUC5AC expression. Histopathology 61, 576–586 (2012).

    Article  PubMed  Google Scholar 

  77. Bousquet Mur, E. et al. Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma. J. Clin. Investig. 130, 612–624 (2020).

    Article  PubMed  Google Scholar 

  78. Xu, Y., Song, S., Wang, Z. & Ajani, J. A. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun. Signal. 17, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dummer, R. et al. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: a joint expert opinion. J. Eur. Acad. Dermatol. Venereol. 34, 1944–1956 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Onishi, H. et al. Hedgehog signaling regulates PDL-1 expression in cancer cells to induce anti-tumor activity by activated lymphocytes. Cell. Immunol. 310, 199–204 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Fukaya, M. et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131, 14–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Yanai, K. et al. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer. J. Surg. Oncol. 95, 55–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Koh, V. et al. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett. 518, 59–71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, D. et al. Wee1 inhibitor AZD1775 combined with cisplatin potentiates anticancer activity against gastric cancer by increasing DNA damage and cell apoptosis. Biomed. Res. Int. 2018, 5813292 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Min, S. H. et al. Laparoscopic gastrojejunostomy versus duodenal stenting in unresectable gastric cancer with gastric outlet obstruction. Ann. Surg. Treat. Res. 93, 130–136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kwon, M. et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J. Immunother. Cancer 10, e005041 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. cBbioPortal. Queried gene ARID1A. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=ARID1A&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  88. Kim, Y. B., Ahn, J. M., Bae, W. J., Sung, C. O. & Lee, D. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int. J. Cancer 145, 916–926 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Zou, J. et al. Genetic alterations and expression characteristics of ARID1A impact tumor immune contexture and survival in early-onset gastric cancer. Am. J. Cancer Res. 10, 3947–3972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shen, J. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 24, 556–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dong, X. et al. Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma – rationale for targeting ARID1A deficiency. Gut 71, 467–478 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, R. et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69, 18–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, R. et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat. Med. 27, 141–151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xu, D. et al. TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology 225, 151915 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maruhashi, T., Sugiura, D., Okazaki, I. M. & Okazaki, T. LAG-3: from molecular functions to clinical applications. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng, Y. et al. The chemokine receptor CXCR4 and c-MET cooperatively promote epithelial-mesenchymal transition in gastric cancer cells. Transl. Oncol. 11, 487–497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Qin, Y. et al. Cancer-associated fibroblasts in gastric cancer affect malignant progression via the CXCL12-CXCR4 axis. J. Cancer 12, 3011–3023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Daniel, S. K., Seo, Y. D. & Pillarisetty, V. G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. 65, 176–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka, M. Crosstalk of tumor stromal cells orchestrates invasion and spreading of gastric cancer. Pathol. Int. 72, 219–233 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Gambardella, V. et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat. Rev. 86, 102015 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gomez-Roca, C. et al. Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-004076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ingram, J. R. et al. Localized CD47 blockade enhances immunotherapy for murine melanoma. Proc. Natl Acad. Sci. USA 114, 10184–10189 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheong, J. H. et al. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 19, 629–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Nakamura, Y. et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 26, 1859–1864 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, Y.-W. et al. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Exp. Mol. Med. 51, 1–10 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Leal, A. et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 11, 525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Amin, M. B. et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).

    Article  PubMed  Google Scholar 

  118. Jiang, Y. et al. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann. Oncol. 31, 760–768 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Wen, T. et al. A four-factor immunoscore system that predicts clinical outcome for stage II/III gastric cancer. Cancer Immunol. Res. 5, 524–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Cardoso, R. et al. A systematic review and meta-analysis of the utility of EUS for preoperative staging for gastric cancer. Gastric Cancer 15, 19–26 (2012).

    Article  Google Scholar 

  121. Spolverato, G. et al. Use of endoscopic ultrasound in the preoperative staging of gastric cancer: a multi-institutional study of the US Gastric Cancer Collaborative. J. Am. Coll. Surg. 220, 48–56 (2015).

    Article  PubMed  Google Scholar 

  122. Pan, Z. et al. Gastric cancer staging with dual energy spectral CT imaging. PLoS ONE 8, e53651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wieder, H. A., Krause, B. J. & Herrmann, K. PET and PET-CT in esophageal and gastric cancer. Methods Mol. Biol. 727, 59–76 (2011).

    Article  PubMed  Google Scholar 

  124. Sarela, A. I., Lefkowitz, R., Brennan, M. F. & Karpeh, M. S. Selection of patients with gastric adenocarcinoma for laparoscopic staging. Am. J. Surg. 191, 134–138 (2006).

    Article  PubMed  Google Scholar 

  125. Trout, R. M. et al. Polarization enhanced laparoscope for improved visualization of tissue structural changes associated with peritoneal cancer metastasis. Biomed. Opt. Express 13, 571–589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lier, M. C. I. et al. Comparison of enhanced laparoscopic imaging techniques in endometriosis surgery: a diagnostic accuracy study. Surg. Endosc. 34, 96–104 (2020).

    Article  PubMed  Google Scholar 

  127. Cunningham, D. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355, 11–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Ychou, M. et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 29, 1715–1721 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Al-Batran, S. E. et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019).

    Article  PubMed  Google Scholar 

  130. Smyth, E. C. et al. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v38–v49 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Noh, S. H. et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 15, 1389–1396 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Smalley, S. R. et al. Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J. Clin. Oncol. 30, 2327–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, J. et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J. Clin. Oncol. 30, 268–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Leong, T. et al. TOPGEAR: a randomized, phase III trial of perioperative ECF chemotherapy with or without preoperative chemoradiation for resectable gastric cancer: interim results from an international, intergroup trial of the AGITG, TROG, EORTC and CCTG. Ann. Surg. Oncol. 24, 2252–2258 (2017).

    Article  PubMed  Google Scholar 

  135. Hoeppner, J. et al. ESOPEC: prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer https://doi.org/10.1186/s12885-016-2564-y (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Slagter, A. E. et al. CRITICS-II: a multicentre randomised phase II trial of neo-adjuvant chemotherapy followed by surgery versus neo-adjuvant chemotherapy and subsequent chemoradiotherapy followed by surgery versus neo-adjuvant chemoradiotherapy followed by surgery in resecta. BMC Cancer https://doi.org/10.1186/s12885-018-4770-2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ahn, J. Y. et al. Endoscopic and oncologic outcomes after endoscopic resection for early gastric cancer: 1370 cases of absolute and extended indications. Gastrointest. Endosc. 74, 485–493 (2011).

    Article  PubMed  Google Scholar 

  138. Tanabe, S. et al. Gastric cancer treated by endoscopic submucosal dissection or endoscopic mucosal resection in Japan from 2004 through 2006: JGCA nationwide registry conducted in 2013. Gastric Cancer 20, 834–842 (2017).

    Article  PubMed  Google Scholar 

  139. Ono, H. et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer (second edition). Dig. Endosc. 33, 4–20 (2021).

    Article  PubMed  Google Scholar 

  140. Pimentel-Nunes, P. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update. Endoscopy 51, 365–388 (2019).

    Article  PubMed  Google Scholar 

  141. Probst, A. et al. Endoscopic submucosal dissection for early gastric cancer: are expanded resection criteria safe for Western patients? Endoscopy 49, 855–865 (2017).

    Article  PubMed  Google Scholar 

  142. Probst, A. & Messmann, H. Endoscopic therapy for early gastric cancers – from EMR to ESD, from guideline criteria to expanded criteria. Digestion 80, 170–172 (2009).

    Article  PubMed  Google Scholar 

  143. Ahmed, Y. & Othman, M. EMR/ESD: techniques, complications, and evidence. Curr. Gastroenterol. Rep. 22, 39 (2020).

    Article  PubMed  Google Scholar 

  144. Lee, S. S., Chung, H. Y., Kwon, O. K. & Yu, W. Long-term quality of life after distal subtotal and total gastrectomy: symptom- and behavior-oriented consequences. Ann. Surg. 263, 738–744 (2016).

    Article  PubMed  Google Scholar 

  145. Japanese Gastric Cancer Association.Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 24, 1–21 (2021).

    Article  Google Scholar 

  146. Sasako, M. et al. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N. Engl. J. Med. 359, 453–462 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Hartgrink, H. H. et al. Extended lymph node dissection for gastric cancer: who may benefit? Final results of the randomized Dutch gastric cancer group trial. J. Clin. Oncol. 22, 2069–2077 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Songun, I., Putter, H., Kranenbarg, E. M.-K., Sasako, M. & van de Velde, C. J. H. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 11, 439–449 (2010).

    Article  PubMed  Google Scholar 

  149. Cuschieri, A. et al. Patient survival after D1 and D2 resections for gastric cancer: long-term results of the MRC randomized surgical trial. Br. J. Cancer 79, 1522–1530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Degiuli, M. et al. D2 dissection improves disease-specific survival in advanced gastric cancer patients: 15-year follow-up results of the Italian Gastric Cancer Study Group D1 versus D2 randomised controlled trial. Eur. J. Cancer 150, 10–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Kurokawa, Y. et al. Bursectomy versus omentectomy alone for resectable gastric cancer (JCOG1001): a phase 3, open-label, randomised controlled trial. Lancet Gastroenterol. Hepatol. 3, 460–468 (2018).

    Article  PubMed  Google Scholar 

  152. Huscher, C. G. S. et al. Laparoscopic versus open subtotal gastrectomy for distal gastric cancer: five-year results of a randomized prospective trial. Ann. Surg. 241, 232–237 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Huscher, C. G. et al. Totally laparoscopic total and subtotal gastrectomy with extended lymph node dissection for early and advanced gastric cancer: early and long-term results of a 100-patient series. Am. J. Surg. 194, 839–844 (2007).

    Article  PubMed  Google Scholar 

  154. Kim, H. H. et al. Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage I gastric cancer: the KLASS-01 randomized clinical trial. JAMA Oncol. 5, 506–513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. He, H. et al. Study on safety of laparoscopic total gastrectomy for clinical stage I gastric cancer: the protocol of the CLASS02–01 multicenter randomized controlled clinical trial. BMC Cancer https://doi.org/10.1186/s12885-018-4846-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kim, H. I. et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann. Surg. 263, 103–109 (2016).

    Article  PubMed  Google Scholar 

  157. Uyama, I. et al. Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer: a multi-institutional prospective single-arm study. Gastric Cancer 22, 377–385 (2019).

    Article  PubMed  Google Scholar 

  158. Ma, J., Li, X., Zhao, S., Zhang, R. & Yang, D. Robotic versus laparoscopic gastrectomy for gastric cancer: a systematic review and meta-analysis. World J. Surg. Oncol. https://doi.org/10.1186/s12957-020-02080-7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ye, S.-P. et al. Robotic- versus laparoscopic-assisted distal gastrectomy with D2 lymphadenectomy for advanced gastric cancer based on propensity score matching: short-term outcomes at a high-capacity center. Sci. Rep. https://doi.org/10.1038/s41598-020-63616-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kim, H. I., Park, M. S., Song, K. J., Woo, Y. & Hyung, W. J. Rapid and safe learning of robotic gastrectomy for gastric cancer: multidimensional analysis in a comparison with laparoscopic gastrectomy. Eur. J. Surg. Oncol. 40, 1346–1354 (2014).

    Article  PubMed  Google Scholar 

  161. Ithurralde-Argerich, J. et al. Laparoscopic prophylactic total gastrectomy for hereditary diffuse gastric cancer in CDH1 mutation carriers. J. Laparoendosc. Adv. Surg. Tech. A 31, 729–737 (2021).

    Article  PubMed  Google Scholar 

  162. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer 14, 101–112 (2011).

    Article  Google Scholar 

  163. Sayegh, M. E. et al. TNM and Japanese staging systems for gastric cancer: how do they coexist? Gastric Cancer 7, 140–148 (2004).

    Article  PubMed  Google Scholar 

  164. Gotoda, T. et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 3, 219–225 (2000).

    Article  PubMed  Google Scholar 

  165. Ahn, S. H. et al. Laparoscopic double-tract proximal gastrectomy for proximal early gastric cancer. Gastric Cancer 17, 562–570 (2014).

    Article  PubMed  Google Scholar 

  166. Kuroda, S. et al. Double-flap technique as an antireflux procedure in esophagogastrostomy after proximal gastrectomy. J. Am. Coll. Surg. 223, e7–e13 (2016).

    Article  PubMed  Google Scholar 

  167. Hirata, Y. et al. The role of proximal gastrectomy in gastric cancer. Chin. Clin. Oncol. 11, 39 (2022).

    Article  PubMed  Google Scholar 

  168. Xu, Y. et al. Proximal versus total gastrectomy for proximal early gastric cancer: a systematic review and meta-analysis. Medicine 98, e15663 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Katai, H. et al. Survival outcomes after laparoscopy-assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, non-inferiority, phase 3 randomised controlled trial. Lancet Gastroenterol. Hepatol. 5, 142–151 (2020).

    Article  PubMed  Google Scholar 

  170. Liu, F. et al. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer: the CLASS02 multicenter randomized clinical trial. JAMA Oncol. 6, 1590–1597 (2020).

    Article  PubMed  Google Scholar 

  171. Hyung, W. J. et al. A feasibility study of laparoscopic total gastrectomy for clinical stage I gastric cancer: a prospective multi-center phase II clinical trial, KLASS 03. Gastric Cancer 22, 214–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Katai, H. et al. Single-arm confirmatory trial of laparoscopy-assisted total or proximal gastrectomy with nodal dissection for clinical stage I gastric cancer: Japan Clinical Oncology Group study JCOG1401. Gastric Cancer 22, 999–1008 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Yu, J. et al. Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial. J. Am. Med. Assoc. 321, 1983–1992 (2019).

    Article  Google Scholar 

  174. Lee, H. J. et al. Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy with D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT). Ann. Surg. 270, 983–991 (2019).

    Article  PubMed  Google Scholar 

  175. Hyung, W. J. et al. Long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial. J. Clin. Oncol. 38, 3304–3313 (2020).

    Article  PubMed  Google Scholar 

  176. Strong, V. E. et al. Robotic gastrectomy for gastric adenocarcinoma in the USA: insights and oncologic outcomes in 220 patients. Ann. Surg. Oncol. 28, 742–750 (2021).

    Article  PubMed  Google Scholar 

  177. Sasako, M. et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol. 29, 4387–4393 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Kakeji, Y. et al. Three-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 plus docetaxel versus S-1 alone in stage III gastric cancer: JACCRO GC-07. Gastric Cancer 25, 188–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Polom, K. et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 105, 159–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Pietrantonio, F. et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J. Clin. Oncol. 37, 3392–3400 (2019).

    Article  PubMed  Google Scholar 

  182. Smyth, E. C. et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial. JAMA Oncol. 3, 1197–1203 (2017).

    Article  PubMed  Google Scholar 

  183. Choi, Y. Y. et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann. Surg. 270, 309–316 (2019).

    Article  PubMed  Google Scholar 

  184. Chao, J. et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol. 7, 895–902 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. André, T. et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 41, 255–265 (2023).

    Article  PubMed  Google Scholar 

  186. Alderson, D. et al. Neoadjuvant cisplatin and fluorouracil versus epirubicin, cisplatin, and capecitabine followed by resection in patients with oesophageal adenocarcinoma (UK MRC OE05): an open-label, randomised phase 3 trial. Lancet Oncol. 18, 1249–1260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yoshida, K. et al. Addition of docetaxel to oral fluoropyrimidine improves efficacy in patients with stage III gastric cancer: interim analysis of JACCRO GC-07, a randomized controlled trial. J. Clin. Oncol. 37, 1296–1304 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Park, S. H. et al. A randomized phase III trial comparing adjuvant single-agent S1, S-1 with oxaliplatin, and postoperative chemoradiation with S-1 and oxaliplatin in patients with node-positive gastric cancer after D2 resection: the ARTIST 2 trial. Ann. Oncol. 32, 368–374 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Kang, Y. K. et al. PRODIGY: a phase III study of neoadjuvant docetaxel, oxaliplatin, and S-1 plus surgery and adjuvant S-1 versus surgery and adjuvant S-1 for resectable advanced gastric cancer. J. Clin. Oncol. 39, 2903–2913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang, X. et al. Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): an open-label, superiority and non-inferiority, phase 3 randomised controlled trial. Lancet Oncol. 22, 1081–1092 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. cBioPortal. Queried genes KRAS, HRAS & 24 other genes. cBioPortal https://www.cbioportal.org/results/oncoprint?cancer_study_list=stad_tcga%2Cstad_tcga_pub%2Cstad_tcga_pan_can_atlas_2018&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&profileFilter=mutations%2Cstructural_variants%2Cgistic&case_set_id=all&gene_list=KRAS%2520HRAS%2520BRAF%2520RAF1%2520MAP3K1%2520MAP3K2%2520MAP3K3%2520MAP3K4%2520MAP3K5%2520MAP2K1%2520MAP2K2%2520MAP2K3%2520MAP2K4%2520MAP2K5%2520MAPK1%2520MAPK3%2520MAPK4%2520MAPK6%2520MAPK7%2520MAPK8%2520MAPK9%2520MAPK12%2520MAPK14%2520DAB2%2520RASSF1%2520RAB25&geneset_list=%20&tab_index=tab_visualize&Action=Submit (2018).

  192. Lordick, F. et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1005–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge A. Chaudry, Royal Marsden Hospital, London, UK for providing the video of a robotic gastrectomy. We gratefully acknowledge Y. Maeda, Maeda Hospital, Tokyo, Japan, for providing the video of endoscopic submucosal dissection.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Jaffer A. Ajani.

Ethics declarations

Competing interests

J.A.A. has acted as an adviser to Aadi, Arcus, Amgen, Astellas, AZ, BMS, BeiGene, Daiichi, Gilead, Grail, Merck, Novartis, Servier and Zymeworks, and has received institutional research funding from Astellas, BMS, Daiichi, Delta Fly, Gilead, LaNova, Leap, Merck, Prolinx, Taiho, Turning Point and Zymeworks. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks D.-Y. Oh, K. Shitara; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video S1.

Robot-assisted total gastrectomy. Selected clip focusing on dissection and ligation of the left gastric artery and associated lymphadenectomy (stations 7, 8, 9 and 11) in a patient undergoing robot-assisted total gastrectomy for gastric adenocarcinoma.

Supplementary Video S2.

Selected clip showing an endoscopic submucosal dissection procedure in a patient with early stage gastric adenocarcinoma located at the greater curvature of middle gastric body.

Supplementary Fig. 1 and Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, Y., Noorani, A., Song, S. et al. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat Rev Clin Oncol 20, 453–469 (2023). https://doi.org/10.1038/s41571-023-00767-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00767-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer