Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acute pulmonary embolism. Part 2: treatment

Abstract

The clinical presentation of pulmonary embolism (PE) varies widely, ranging from only limited symptoms to severe cardiogenic shock. Treatment of PE comprises initial therapy—with low-molecular-weight heparin (LMWH), fondaparinux, or unfractionated heparin—and long-term treatment, most commonly with vitamin-K antagonists (VKAs). Methods of risk stratification, to determine whether a patient will benefit from thrombolysis, are currently under investigation. However, at present, insufficient evidence exists that hemodynamically stable patients who demonstrate echocardiographic right ventricular strain (submassive PE) benefit from thrombolysis. By contrast, thrombolysis is a widely accepted treatment strategy for patients with hemodynamic shock (massive PE). The duration of VKA treatment is commonly 3–12 months and depends on the type of PE and on the balance between the risks of recurrent PE, major bleeding, and the patient's preference. In patients with a malignancy, treatment with LMWH during the first 6 months after diagnosis of PE is recommended. Several new oral anticoagulants, such as factor IIa and factor Xa inhibitors, are now being investigated. For prevention of recurrent PE in situations where anticoagulation is contraindicated, a temporary inferior vena cava filter might be useful. Some patients with PE can be safely treated at home, but few outcome studies in this setting have been published.

Key Points

  • Pulmonary embolism (PE) can be effectively treated with anticoagulant medication

  • Initial therapy for PE comprises low-molecular-weight heparin, unfractionated heparin, or fondaparinux, and is followed by long-term treatment with oral vitamin-K antagonists

  • Duration of long-term anticoagulation is usually 3–12 months and depends on type of PE, risk of recurrence, risk of major bleeding, and the patient's preference

  • Tailoring the duration of treatment using biomarkers, such as D-dimer level or presence of residual vein thrombosis, is not yet recommended

  • Patients with PE who are hemodynamically unstable (massive PE) should be treated with thrombolysis

  • Currently, insufficient evidence exists that hemodynamically stable patients with right ventricular dysfunction (submassive PE) benefit from thrombolysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cumulative proportions of recurrent thrombosis after cessation of anticoagulant therapy.
Figure 2: Overview of treatment strategies for patients with pulmonary embolism.
Figure 3: Novel anticoagulants, such as factor IIa, factor Xa, and amplification-loop inhibitors, in the coagulation cascade.

Similar content being viewed by others

References

  1. Goldhaber, S. Z., Visani, L. & De, Rosa. M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 353, 1386–1389 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. White, R. H. The epidemiology of venous thromboembolism. Circulation 107 (Suppl. 1), I4–I8 (2003).

    PubMed  Google Scholar 

  3. US Department of Health and Human Services. The Surgeon General's call to action to prevent deep vein thrombosis and pulmonary embolism, [online] (2008).

  4. Douma, R. A., Kamphuisen, P. W. & Büller, H. R. Acute pulmonary embolism. Part 1: epidemiology and diagnosis. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2010.106.

    Article  PubMed  Google Scholar 

  5. Sanchez, O. et al. Prognostic factors for pulmonary embolism: the PREP study, a prospective multicenter cohort study. Am. J. Respir. Crit. Care Med. 181, 168–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Barritt, D. W. & Jordan, S. C. Anticoagulant drugs in the treatment of pulmonary embolism. A controlled trial. Lancet 1, 1309–1312 (1960).

    Article  CAS  PubMed  Google Scholar 

  7. Task Force on Pulmonary Embolism, European Society of Cardiology. Guidelines on diagnosis and management of acute pulmonary embolism. Eur. Heart J. 21, 1301–1336 (2000).

  8. Konstantinides, S. Pulmonary embolism: impact of right ventricular dysfunction. Curr. Opin. Cardiol. 20, 496–501 (2005).

    Article  PubMed  Google Scholar 

  9. Kasper, W. et al. Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J. Am. Coll. Cardiol. 30, 1165–1171 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Gibson, N. S., Sohne, M. & Büller, H. R. Prognostic value of echocardiography and spiral computed tomography in patients with pulmonary embolism. Curr. Opin. Pulm. Med. 11, 380–384 (2005).

    PubMed  Google Scholar 

  11. Kucher, N., Rossi, E., De Rosa, M. & Goldhaber, S. Z. Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mmHg or higher. Arch. Intern. Med. 165, 1777–1781 (2005).

    Article  PubMed  Google Scholar 

  12. van der Meer, R. W. et al. Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology 235, 798–803 (2005).

    Article  PubMed  Google Scholar 

  13. Vuilleumier, N. et al. Correlation between cardiac biomarkers and right ventricular enlargement on chest CT in nonmassive pulmonary embolism. Thromb. Res. 121, 617–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Becattini, C., Vedovati, M. C. & Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation 116, 427–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ten Wolde, M. et al. Brain natriuretic peptide as a predictor of adverse outcome in patients with pulmonary embolism. Circulation 107, 2082–2084 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Kostrubiec, M. et al. Biomarker-based risk assessment model in acute pulmonary embolism. Eur. Heart J. 26, 2166–2172 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Douma, R. A. & Kamphuisen, P. W. Thrombolysis for pulmonary embolism and venous thrombosis: is it worthwhile? Semin. Thromb. Hemost. 33, 821–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kearon, C. et al. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, 454S–545S (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kearon, C. et al. Comparison of fixed-dose weight-adjusted unfractionated heparin and low-molecular-weight heparin for acute treatment of venous thromboembolism. JAMA 296, 935–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Quinlan, D. J., McQuillan, A. & Eikelboom, J. W. Low-molecular-weight heparin compared with intravenous unfractionated heparin for treatment of pulmonary embolism: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 140, 175–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Büller, H. R. et al. Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism. N. Engl. J. Med. 349, 1695–1702 (2003).

    Article  PubMed  Google Scholar 

  22. Hoy, S. M., Scott, L. J. & Plosker, G. L. Tinzaparin sodium: a review of its use in the prevention and treatment of deep vein thrombosis and pulmonary embolism, and in the prevention of clotting in the extracorporeal circuit during haemodialysis. Drugs 70, 1319–1347 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Schulman, S., Beyth, R. J., Kearon, C. & Levine, M. N. Hemorrhagic complications of anticoagulant and thrombolytic treatment: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, 257S–298S (2008).

  24. Büller, H. R., Sohne, M. & Middeldorp, S. Treatment of venous thromboembolism. J. Thromb. Haemost. 3, 1554–1560 (2005).

    Article  PubMed  Google Scholar 

  25. Warkentin, T. E. et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N. Engl. J. Med. 332, 1330–1335 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Savi, P. et al. Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: a blinded comparative multicenter study with unfractionated heparin. Blood 105, 139–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Warkentin, T. E. et al. Gender imbalance and risk factor interactions in heparin-induced thrombocytopenia. Blood 108, 2937–2941 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Greinacher, A. et al. Clinical features of heparin-induced thrombocytopenia including risk factors for thrombosis. A retrospective analysis of 408 patients. Thromb. Haemost. 94, 132–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Warkentin, T. E. & Greinacher, A. Heparin-induced thrombocytopenia: recognition, treatment, and prevention: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126, 311S–337S (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Grifoni, S. et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation 101, 2817–2822 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Stein, P. D. et al. Enlarged right ventricle without shock in acute pulmonary embolism: prognosis. Am. J. Med. 121, 34–42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Konstantinides, S., Geibel, A., Heusel, G., Heinrich, F. & Kasper, W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N. Engl. J. Med. 347, 1143–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Wan, S., Quinlan, D. J., Agnelli, G. & Eikelboom, J. W. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: a meta-analysis of the randomized controlled trials. Circulation 110, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Becattini, C. et al. Bolus tenecteplase for right ventricle dysfunction in hemodynamically stable patients with pulmonary embolism. Thromb. Res. 125, e82–e86 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Meyer, G. The PEITHO study: for a clarification of the indications for the fibrinolytic treatment of pulmonary embolism [French]. Rev. Pneumol. Clin. 64, 326–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Weitz, J. I. New oral anticoagulants in development. Thromb. Haemost. 103, 62–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Thabut, G. et al. Thrombolytic therapy of pulmonary embolism: a meta-analysis. J. Am. Coll. Cardiol. 40, 1660–1667 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Büller, H. R. et al. Antithrombotic therapy for venous thromboembolic disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126, 401S–428S (2004).

    Article  PubMed  Google Scholar 

  39. Jerjes-Sanchez, C. et al. Streptokinase and heparin versus heparin alone in massive pulmonary embolism: a randomized controlled trial. J. Thromb. Thrombolysis 2, 227–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Wan, S., Quinlan, D. J., Agnelli, G. & Eikelboom, J. W. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: a meta-analysis of the randomized controlled trials. Circulation 110, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kucher, N., Rossi, E., De Rosa, M. & Goldhaber, S. Z. Massive pulmonary embolism. Circulation 113, 577–582 (2006).

    Article  PubMed  Google Scholar 

  42. Dong, B., Jirong, Y., Liu, G., Wang, Q. & Wu, T. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst. Rev., Issue 8. Art. No.: CD004437. doi:10.1002/14651858.CD004437.pub3 (2006).

  43. Obermaier, R. et al. Successful catheter-guided local thrombolysis in acute pulmonary embolism in the early postoperative period after pancreatic head resection [German]. Chirurg. 73, 945–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kelly, P., Carroll, N., Grant, C., Barrett, C. & Kocka, V. Successful treatment of massive pulmonary embolism with prolonged catheter-directed thrombolysis. Heart Vessels 21, 124–126 (2006).

    Article  PubMed  Google Scholar 

  45. Goldhaber, S. Z. Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy. J. Thromb. Haemost. 7 (Suppl. 1), 322–327 (2009).

    Article  PubMed  Google Scholar 

  46. Kucher, N. Catheter embolectomy for acute pulmonary embolism. Chest 132, 657–663 (2007).

    Article  PubMed  Google Scholar 

  47. Morshuis, W. J., Jansen, E. W., Vincent, J. G., Heystraten, F. M. & Lacquet, L. K. Intraoperative fiberoptic angioscopy to evaluate the completeness of pulmonary embolectomy. J. Cardiovasc. Surg. (Torino) 30, 630–634 (1989).

    CAS  Google Scholar 

  48. Mobin-Uddin, K., McLean, R. & Jude, J. R. A new catheter technique of interruption of inferior vena cava for prevention of pulmonary embolism. Am. Surg. 35, 889–894 (1969).

    CAS  PubMed  Google Scholar 

  49. Albers, G. W., Amarenco, P., Easton, J. D., Sacco, R. L. & Teal, P. Antithrombotic and thrombolytic therapy for ischemic stroke: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, 630S–669S (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Joels, C. S., Sing, R. F. & Heniford, B. T. Complications of inferior vena cava filters. Am. Surg. 69, 654–659 (2003).

    PubMed  Google Scholar 

  51. Mission, J. F., Kerlan, R. K. Jr,, Tan, J. H. & Fang, M. C. Rates and predictors of plans for inferior vena cava filter retrieval in hospitalized patients. J. Gen. Intern. Med. 25, 321–325 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ingber, S. & Geerts, W. H. Vena caval filters: current knowledge, uncertainties and practical approaches. Curr. Opin. Hematol. 16, 402–406 (2009).

    Article  PubMed  Google Scholar 

  53. Young, T., Tang, H. & Hughes, R. Vena caval filters for the prevention of pulmonary embolism. Cochrane Database Syst. Rev., Issue 2. Art. No.: CD006212. doi:10.1002/14651858.CD006212.pub3 (2010).

  54. PREPIC Study Group. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study. Circulation 112, 416–422 (2005).

  55. Couturaud, F. & Kearon, C. Optimum duration of anticoagulant treatment after an episode of venous thromboembolism [French]. Rev. Pneumol. Clin. 64, 305–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Baglin, T., Luddington, R., Brown, K. & Baglin, C. Incidence of recurrent venous thromboembolism in relation to clinical and thrombophilic risk factors: prospective cohort study. Lancet 362, 523–526 (2003).

    Article  PubMed  Google Scholar 

  57. Schulman, S. et al. A comparison of six weeks with six months of oral anticoagulant therapy after a first episode of venous thromboembolism. Duration of Anticoagulation Trial Study Group. N. Engl. J. Med. 332, 1661–1665 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Campbell, I. A. et al. Anticoagulation for three versus six months in patients with deep vein thrombosis or pulmonary embolism, or both: randomised trial. BMJ 334, 674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinede, L. et al. Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis. Circulation 103, 2453–2460 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Agnelli, G. et al. Three months versus one year of oral anticoagulant therapy for idiopathic deep venous thrombosis. Warfarin Optimal Duration Italian Trial Investigators. N. Engl. J. Med. 345, 165–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. van der Meer, F. J., Rosendaal, F. R., Vandenbroucke, J. P. & Briët, E. Bleeding complications in oral anticoagulant therapy. An analysis of risk factors. Arch. Intern. Med. 153, 1557–1562 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Hull, R. D. et al. Self-managed long-term low-molecular-weight heparin therapy: the balance of benefits and harms. Am. J. Med. 120, 72–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kamphuisen, P. W. Can anticoagulant treatment be tailored with biomarkers in patients with venous thromboembolism? J. Thromb. Haemost. 4, 1206–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Palareti, G. et al. Predictive value of D-dimer test for recurrent venous thromboembolism after anticoagulation withdrawal in subjects with a previous idiopathic event and in carriers of congenital thrombophilia. Circulation 108, 313–318 (2003).

    Article  PubMed  Google Scholar 

  65. Eichinger, S. et al. D-dimer levels and risk of recurrent venous thromboembolism. JAMA 290, 1071–1074 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Palareti, G. et al. D-dimer testing to determine the duration of anticoagulation therapy. N. Engl. J. Med. 355, 1780–1789 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Prandoni, P. et al. Residual thrombosis on ultrasonography to guide the duration of anticoagulation in patients with deep venous thrombosis: a randomized trial. Ann. Intern. Med. 150, 577–585 (2009).

    Article  PubMed  Google Scholar 

  68. Cosmi, B. et al. Residual venous obstruction, alone and in combination with D-dimer, as a risk factor for recurrence after anticoagulation withdrawal following a first idiopathic deep vein thrombosis in the prolong study. Eur. J. Vasc. Endovasc. Surg. 39, 356–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Rodger, M. A. et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ 179, 417–426 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bourjeily, G., Paidas, M., Khalil, H., Rosene-Montella, K. & Rodger, M. Pulmonary embolism in pregnancy. Lancet 375, 500–512 (2010).

    Article  PubMed  Google Scholar 

  71. Heit, J. A. et al. Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. Ann. Intern. Med. 143, 697–706 (2005).

    Article  PubMed  Google Scholar 

  72. Pretorius, E., Bronkhorst, P., Briedenhann, S., Smit, E. & Franz, R. C. Comparisons of the fibrin networks during pregnancy, nonpregnancy and pregnancy during dysfibrinogenaemia using the scanning electron microscope. Blood Coagul. Fibrinolysis 20, 12–16 (2009).

    Article  PubMed  Google Scholar 

  73. Cordts, P. R. & Gawley, T. S. Anatomic and physiologic changes on the lower extremity venous hemodynamics associated with pregnancy. J. Vasc. Surg. 24, 763–767 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Pavek, P., Ceckova, M. & Staud, F. Variation of drug kinetics in pregnancy. Curr. Drug Metab. 10, 520–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Bates, S. M., Greer, I. A., Pabinger, I., Sofaer, S. & Hirsh, J. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, 844S–886S (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Otten, H. M. et al. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch. Intern. Med. 164, 190–194 (2004).

    Article  PubMed  Google Scholar 

  77. Chew, H. K., Wun, T., Harvey, D., Zhou, H. & White, R. H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166, 458–464 (2006).

    Article  PubMed  Google Scholar 

  78. Lee, A. Y. et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N. Engl. J. Med. 349, 146–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lim, W., Crowther, M. A. & Eikelboom, J. W. Management of antiphospholipid antibody syndrome: a systematic review. JAMA 295, 1050–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kearon, C. et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N. Engl. J. Med. 340, 901–907 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Schulman, S., Svenungsson, E. & Granqvist, S. Anticardiolipin antibodies predict early recurrence of thromboembolism and death among patients with venous thromboembolism following anticoagulant therapy. Duration of Anticoagulation Study Group. Am. J. Med. 104, 332–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Weitz, J. I., Middeldorp, S., Geerts, W. & Heit, J. A. American Society of Hematology Education Program Book. Thrombophilia and new anticoagulant drugs. Hematology Am. Soc. Hematol. Educ. Program 424–438 (2004).

  83. Eikelboom, J. W. & Weitz, J. I. New anticoagulants. Circulation 121, 1523–1532 (2010).

    Article  PubMed  Google Scholar 

  84. Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342–2352 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. ClinicalTrials.gov. Clinical Study Assessing SSR126517E Injections Once-weekly in Pulmonary Embolism Therapeutic Approach (CASSIOPEA), [online] (2010).

  86. Markel Vaysman, A. & Nutescu, E. A. YM-150, a factor Xa inhibitor for the prevention of venous thromboembolism and coronary artery disease. Curr. Opin. Investig. Drugs 11, 333–339 (2010).

    PubMed  Google Scholar 

  87. Otero, R. et al. Home treatment in pulmonary embolism. Thromb. Res. 126, e1–e5 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Agterof, M. J. et al. Out of hospital treatment of acute pulmonary embolism in patients with a low NT-proBNP level. J. Thromb. Haemost. 8, 1235–1241 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Hirsh, J. et al. Parenteral anticoagulants: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, 141S–159S (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Agnelli, G., Becattini, C. & Kirschstein, T. Thrombolysis vs heparin in the treatment of pulmonary embolism: a clinical outcome-based meta-analysis. Arch. Intern. Med. 162, 2537–2541 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

J. van Es, R. A. Douma, and P. W. Kamphuisen researched data for the article. J. van Es, R. A. Douma, V. E. A. Gerdes, P. W. Kamphuisen, and H. R. Büller contributed to the discussion of content. J. van Es and R. A. Douma wrote the article. J. van Es, R. A. Douma, V. E. A. Gerdes, P. W. Kamphuisen, and H. R. Büller reviewed the manuscript before submission. J. van Es revised the article in response to peer-review and editorial comments.

Corresponding author

Correspondence to Josien van Es.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Es, J., Douma, R., Gerdes, V. et al. Acute pulmonary embolism. Part 2: treatment. Nat Rev Cardiol 7, 613–622 (2010). https://doi.org/10.1038/nrcardio.2010.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing