Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dynamics of the coronary collateral circulation

Key Points

  • The coronary collateral circulation protects the heart from myocardial ischaemia, and is associated with improved survival in patients with coronary artery disease

  • Collateral vessels are present at birth, develop throughout life, undergo positive remodelling (arteriogenesis) in the presence of a total or subtotal coronary occlusion, and usually regress with age

  • The myocardial protective effect of the collateral circulation is dynamic in nature, as collateral function can be modulated by several factors

  • Preconditioning, the injection of growth factors, and measures to prolong ventricular diastolic filling time all promote collateral vessel growth and remodelling

  • Collateral flow can be reduced and even reverted if atherosclerosis progresses in the donor artery, a process called the 'collateral steal'

  • Re-establishment of the antegrade flow in the recipient artery induces a derecruitment of collaterals, thus exposing the recipient territory to myocardial ischaemia in cases of sudden coronary occlusion

Abstract

Coronary collaterals are present at birth, with wide interindividual variation in their functional capacity. These vessels protect jeopardized myocardium, and the number of collaterals and the extent of their coverage are associated with improved survival in patients with coronary heart disease. The collateral circulation is not a permanent set of structures, but undergoes dynamic changes with important consequences for cardioprotection. If a severe atherosclerotic lesion develops in an artery supplying tissue downstream of a total occlusion through collateral blood flow, pressure gradients across the collateral bed change. The result is that some of the collateral flow previously supplying the perfusion territory of the totally occluded artery is redirected to the perfusion territory of the donor artery, thus producing a 'collateral steal'. The collateral circulation can regress once antegrade flow in the main dependent artery is re-established, as occurs following the recanalization of a chronic total occlusion. The clinical benefits of coronary revascularization must be cautiously weighed against the risk of reducing the protective support derived from coronary collaterals. Consequently, pharmacological, gene-based, and cell-based therapeutic attempts have been made to enhance collateral function. Although such approaches have so far yielded no, or modest, beneficial results, the rapidly accruing data on coronary collateral circulation will hopefully lead to new effective therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arteriogenesis.
Figure 2: Epicardial collateral circulation.
Figure 3: Conditions that change collateral flow.

Similar content being viewed by others

References

  1. Helfant, R. H., Vokonas, P. S. & Gorlin, R. Functional importance of the human coronary collateral circulation. N. Engl. J. Med. 284, 1277–1281 (1971).

    Article  CAS  Google Scholar 

  2. Wustmann, K., Zbinden, S., Windecker, S., Meier, B. & Seiler, C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 107, 2213–2220 (2003).

    Article  Google Scholar 

  3. Epstein, S. E., Lassance-Soares, R. M., Faber, J. E. & Burnett, M. S. Effects of aging on the collateral circulation, and therapeutic implications. Circulation 125, 3211–3219 (2012).

    Article  Google Scholar 

  4. Seiler, C., Stoller, M., Pitt, B. & Meier, P. The human coronary collateral circulation: development and clinical importance. Eur. Heart J. 34, 2674–2682 (2013).

    Article  CAS  Google Scholar 

  5. Rogers, W. J. et al. Return of left ventricular function after reperfusion in patients with myocardial infarction: importance of subtotal stenoses or intact collaterals. Circulation 69, 338–349 (1984).

    Article  CAS  Google Scholar 

  6. Habib, G. B. et al. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation 83, 739–746 (1991).

    Article  CAS  Google Scholar 

  7. Antoniucci, D. et al. Relation between preintervention angiographic evidence of coronary collateral circulation and clinical and angiographic outcomes after primary angioplasty or stenting for acute myocardial infarction. Am. J. Cardiol. 89, 121–125 (2002).

    Article  Google Scholar 

  8. Zimarino, M. et al. Intraoperative ischemia and long-term events after minimally invasive coronary surgery. Ann. Thorac. Surg. 78, 135–141 (2004).

    Article  Google Scholar 

  9. Choi, J. H. et al. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 127, 703–709 (2013).

    Article  Google Scholar 

  10. Meier, P. et al. The impact of the coronary collateral circulation on mortality: a meta-analysis. Eur. Heart J. 33, 614–621 (2012).

    Article  Google Scholar 

  11. Faber, J. E. et al. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler. Thromb. Vasc. Biol. 31, 1748–1756 (2011).

    Article  CAS  Google Scholar 

  12. Kurotobi, T. et al. Reduced collateral circulation to the infarct-related artery in elderly patients with acute myocardial infarction. J. Am. Coll. Cardiol. 44, 28–34 (2004).

    Article  Google Scholar 

  13. Meier, P. et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 116, 975–983 (2007).

    Article  Google Scholar 

  14. Conway, E. M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001).

    Article  CAS  Google Scholar 

  15. Cai, W. & Schaper, W. Mechanisms of arteriogenesis. Acta. Biochim. Biophys. Sin. (Shanghai) 40, 681–692 (2008).

    Article  CAS  Google Scholar 

  16. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  Google Scholar 

  17. Schaper, W. Collateral circulation: past and present. Basic Res. Cardiol. 104, 5–21 (2009).

    Article  CAS  Google Scholar 

  18. Ingber, D. E. & Tensegrity, I. Cell structure and hierarchical systems biology. J. Cell. Sci. 116, 1157–1173 (2003).

    Article  CAS  Google Scholar 

  19. van Royen, N. et al. Stimulation of arteriogenesis: a new concept for the treatment of arterial occlusive disease. Cardiovasc. Res. 49, 543–553 (2001).

    Article  CAS  Google Scholar 

  20. Heil, M. & Schaper, W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ. Res. 95, 449–458 (2004).

    Article  CAS  Google Scholar 

  21. Semenza, G. L. Angiogenesis in ischemic and neoplastic disorders. Annu. Rev. Med. 54, 17–28 (2003).

    Article  CAS  Google Scholar 

  22. Fraisl, P., Mazzone, M., Schmidt, T. & Carmeliet, P. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell 16, 167–179 (2009).

    Article  CAS  Google Scholar 

  23. Fulton, W. F. The time factor in the enlargement of anastomoses in coronary artery disease. Scott. Med. J. 9, 18–23 (1964).

    Article  CAS  Google Scholar 

  24. Teunissen, P. F., Horrevoets, A. J. & van Royen, N. The coronary collateral circulation: genetic and environmental determinants in experimental models and humans. J. Mol. Cell. Cardiol. 52, 897–904 (2012).

    Article  CAS  Google Scholar 

  25. Chilian, W. M. et al. Coronary collateral growth —back to the future. J. Mol. Cell. Cardiol. 52, 905–911 (2012).

    Article  CAS  Google Scholar 

  26. Werner, G. S. et al. Collateral function in chronic total coronary occlusions is related to regional myocardial function and duration of occlusion. Circulation 104, 2784–2790 (2001).

    Article  CAS  Google Scholar 

  27. Kinn, J. W., Altman, J. D., Chang, M. W. & Bache, R. J. Vasomotor responses of newly developed coronary collateral vessels. Am. J. Physiol. 271, H490–H497 (1996).

    CAS  PubMed  Google Scholar 

  28. Brugaletta, S. et al. Endothelial and smooth muscle cells dysfunction distal to recanalized chronic total coronary occlusions and the relationship with the collateral connection grade. JACC Cardiovasc. Interv. 5, 170–178 (2012).

    Article  Google Scholar 

  29. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  Google Scholar 

  30. Billinger, M. et al. Is the development of myocardial tolerance to repeated ischemia in humans due to preconditioning or to collateral recruitment? J. Am. Coll. Cardiol. 33, 1027–1035 (1999).

    Article  CAS  Google Scholar 

  31. Werner, G. S. et al. Determinants of coronary steal in chronic total coronary occlusions donor artery, collateral, and microvascular resistance. J. Am. Coll. Cardiol. 48, 51–58 (2006).

    Article  Google Scholar 

  32. Zimarino, M. et al. Rapid decline of collateral circulation increases susceptibility to myocardial ischemia: the trade-off of successful percutaneous recanalization of chronic total occlusions. J. Am. Coll. Cardiol. 48, 59–65 (2006).

    Article  Google Scholar 

  33. Seiler, C., Fleisch, M. & Meier, B. Direct intracoronary evidence of collateral steal in humans. Circulation 96, 4261–4267 (1997).

    Article  CAS  Google Scholar 

  34. Billinger, M., Fleisch, M., Eberli, F. R., Meier, B. & Seiler, C. Collateral and collateral-adjacent hyperemic vascular resistance changes and the ipsilateral coronary flow reserve. Documentation of a mechanism causing coronary steal in patients with coronary artery disease. Cardiovasc. Res. 49, 600–608 (2001).

    Article  CAS  Google Scholar 

  35. Gould, K. L. Coronary steal. Is it clinically important? Chest 96, 227–228 (1989).

    Article  CAS  Google Scholar 

  36. Seiler, C., Fleisch, M., Billinger, M. & Meier, B. Simultaneous intracoronary velocity- and pressure-derived assessment of adenosine-induced collateral hemodynamics in patients with one- to two-vessel coronary artery disease. J. Am. Coll. Cardiol. 34, 1985–1994 (1999).

    Article  CAS  Google Scholar 

  37. Fujita, M. & Sasayama, S. Reappraisal of functional importance of coronary collateral circulation. Cardiology 117, 246–252 (2010).

    Article  Google Scholar 

  38. Zimarino, M., Corazzini, A., Ricci, F., Di Nicola, M. & De Caterina, R. Late thrombosis after double versus single drug-eluting stent in the treatment of coronary bifurcations: a meta-analysis of randomized and observational studies. JACC Cardiovasc. Interv. 6, 687–695 (2013).

    Article  Google Scholar 

  39. Meier, P. et al. Coronary collaterals and risk for restenosis after percutaneous coronary interventions: a meta-analysis. BMC Med. 10, 62 (2012).

    Article  Google Scholar 

  40. Levine, G. N. et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 124, e574–e651 (2011).

    Google Scholar 

  41. Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    Article  Google Scholar 

  42. Epstein, S. E. et al. The late open-coronary artery hypothesis: dead, or not definitively tested? Am. J. Cardiol. 100, 1810–1814 (2007).

    Article  Google Scholar 

  43. Tamburino, C. et al. Percutaneous recanalization of chronic total occlusions: wherein lies the body of proof? Am. Heart J. 165, 133–142 (2013).

    Article  Google Scholar 

  44. Zimarino, M., Calafiore, A. M. & De Caterina, R. Complete myocardial revascularization: between myth and reality. Eur. Heart J. 26, 1824–1830 (2005).

    Article  Google Scholar 

  45. Valenti, R. et al. Impact of complete revascularization with percutaneous coronary intervention on survival in patients with at least one chronic total occlusion. Eur. Heart J. 29, 2336–2342 (2008).

    Article  Google Scholar 

  46. Meisel, S. R. et al. Relation of the systemic blood pressure to the collateral pressure distal to an infarct-related coronary artery occlusion during acute myocardial infarction. Am. J. Cardiol. 111, 319–323 (2013).

    Article  Google Scholar 

  47. Rentrop, K. P., Cohen, M., Blanke, H. & Phillips, R. A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol. 5, 587–592 (1985).

    Article  CAS  Google Scholar 

  48. Rockstroh, J. & Brown, B. G. Coronary collateral size, flow capacity, and growth: estimates from the angiogram in patients with obstructive coronary disease. Circulation 105, 168–173 (2002).

    Article  Google Scholar 

  49. Seiler, C., Fleisch, M., Garachemani, A. & Meier, B. Coronary collateral quantitation in patients with coronary artery disease using intravascular flow velocity or pressure measurements. J. Am. Coll. Cardiol. 32, 1272–1279 (1998).

    Article  CAS  Google Scholar 

  50. Traupe, T., Gloekler S., de Marchi, S. F., Werner, G. S. & Seiler, C. Assessment of the human coronary collateral circulation. Circulation 122, 1210–1220 (2010).

    Article  Google Scholar 

  51. Vogel, R. et al. Collateral-flow measurements in humans by myocardial contrast echocardiography: validation of coronary pressure-derived collateral-flow assessment. Eur. Heart J. 27, 157–165 (2006).

    Article  Google Scholar 

  52. Ebersberger, U. et al. Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements. Eur. Heart J. Cardiovasc. Imaging 14, 1174–1180 (2013).

    Article  Google Scholar 

  53. Danad, I. et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J. Nucl. Med. 54, 55–63 (2013).

    Article  CAS  Google Scholar 

  54. Togni, M. et al. Instantaneous coronary collateral function during supine bicycle exercise. Eur. Heart J. 31, 2148–2155 (2010).

    Article  Google Scholar 

  55. Gloekler, S. et al. Coronary collateral growth by external counterpulsation: a randomised controlled trial. Heart 96, 202–207 (2010).

    Article  CAS  Google Scholar 

  56. Fujita, M. & Sasayama, S. Coronary collateral growth and its therapeutic application to coronary artery disease. Circ. J. 74, 1283–1289 (2010).

    Article  CAS  Google Scholar 

  57. Lamping, K. G. et al. Bradycardia stimulates vascular growth during gradual coronary occlusion. Arterioscler. Thromb. Vasc. Biol. 25, 2122–2127 (2005).

    Article  CAS  Google Scholar 

  58. Schirmer, S. H. et al. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis. Eur. Heart J. 33, 1223–1231 (2012).

    Article  CAS  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  60. Meier, P. & Seiler, C. The coronary collateral circulation—clinical relevances and therapeutic options. Heart 99, 897–898 (2012).

    Article  Google Scholar 

  61. Baffour, R. et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J. Vasc. Surg. 16, 181–191 (1992).

    Article  CAS  Google Scholar 

  62. Yanagisawa-Miwa, A. et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403 (1992).

    Article  CAS  Google Scholar 

  63. Banai, S. et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183–2189 (1994).

    Article  CAS  Google Scholar 

  64. Unger, E. F. et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 266, H1588–H1595 (1994).

    CAS  PubMed  Google Scholar 

  65. Seiler, C. et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 104, 2012–2017 (2001).

    Article  CAS  Google Scholar 

  66. Gupta, R., Tongers, J. & Losordo, D. W. Human studies of angiogenic gene therapy. Circ. Res. 105, 724–736 (2009).

    Article  CAS  Google Scholar 

  67. Rubanyi, G. M. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol. Ther. 21, 725–738 (2013).

    Article  CAS  Google Scholar 

  68. Lee, C. W. et al. Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J. Am. Coll. Cardiol. 43, 474–482 (2004).

    Article  CAS  Google Scholar 

  69. Jeevanantham, V. et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126, 551–568 (2012).

    Article  Google Scholar 

  70. Traverse, J. H., Henry, T. D. & Moye, L. A. Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardial infarction when evaluated by cardiac magnetic resonance imaging. Am. Heart J. 162, 671–677 (2011).

    Article  Google Scholar 

  71. Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238 (2004).

    Article  CAS  Google Scholar 

  72. Kaminsky, S. M. et al. Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Hum. Gene Ther. 24, 948–963 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

During the production of this manuscript we witnessed the lost battle—fought with extreme dignity—of our beloved 32-year-old secretarial assistant Lodovica Ottavi against an incurable disease. We will always miss her.

Author information

Authors and Affiliations

Authors

Contributions

M. Zimarino wrote the article, substantially contributed to discussion of content, reviewed and edited the manuscript. M. D'Andreamatteo researched data for the article. R. Waksman substantially contributed to discussion of content. S. E. Epstein wrote the article, substantially contributed to discussion of content, and reviewed the manuscript. R. De Caterina reviewed the manuscript before submission.

Corresponding author

Correspondence to Marco Zimarino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimarino, M., D'Andreamatteo, M., Waksman, R. et al. The dynamics of the coronary collateral circulation. Nat Rev Cardiol 11, 191–197 (2014). https://doi.org/10.1038/nrcardio.2013.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing