Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NFAT proteins: emerging roles in cancer progression

Key Points

  • Nuclear factor of activated T cells (NFAT) is a family of closely related transcription factors that are ubiquitously expressed in mammalian cells and tissues. NFAT1–4 are regulated by the calcium-sensitive phosphatase calcineurin, which induces nuclear translocation and transcriptional activation.

  • The transcriptional activity of NFATs is primarily regulated by phosphorylation that in turn determines subcellular localization. Maintenance kinases such as dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and casein kinase 1 phosphorylate cytoplasmic NFATs and prevent nuclear translocation, whereas export kinases such as DYRK1 and glycogen synthase kinase 3 phosphorylate nuclear NFATs and promote their export.

  • Overexpression and increased transcriptional activity of NFAT isoforms has been detected in various human solid tumours and cell lines, as well as haematological malignancies. This leads to the induction of genes that promote cellular phenotypes that are associated with tumour progression, such as proliferation, survival, migration and invasion phenotypes.

  • NFAT isoforms promote the migration and invasion of tumour cells, prerequisites for metastatic dissemination. These phenotypes are mediated by the transcriptional induction of NFAT target genes in tumour cells, such as prostaglandin E2 and lysophosphatidic acid.

  • NFATs are directly implicated in promoting tumour angiogenesis. In endothelial cells NFATs are activated by vascular endothelial growth factor A and promote vessel formation by inducing pro-angiogenic genes such as cyclooxygenase 2.

  • The activation of NFATs in tumour cells and the tumour microenvironment induces soluble factors that function through both paracrine and autocrine mechanisms to promote tumour progression.

  • Inactivation of NFATs decreases tumour formation. This is consistent with pathophysiological settings of increased expression of the calcineurin inhibitor Down syndrome candidate region 1, which attenuates the activation of NFATs and reduces tumour incidence.

  • Inhibition of NFAT activation using small-molecule inhibitors is predicted to suppress tumorigenesis. Paradoxically, patients receiving immunosuppressive therapy that blocks NFAT activity have a higher incidence of cancer.

  • Future cancer therapy targeting NFATs must take into account the cell type-specific phenotypes associated with deregulated the activation of NFATs.

Abstract

The roles of nuclear factor of activated T cells (NFAT) transcription factors have been extensively studied in the immune system. However, ubiquitous expression of NFAT isoforms in mammalian tissues has recently been observed, and a role for these transcription factors in human cancer is emerging. Various NFAT isoforms are functional in tumour cells and multiple compartments in the tumour microenvironment, including fibroblasts, endothelial cells and infiltrating immune cells. How do NFAT isoforms regulate the complex interplay between these compartments during carcinoma progression? The answers lie with the multiple functions attributed to NFATs, including cell growth, survival, invasion and angiogenesis. In addition to elucidating the complex role of NFATs in cancer, we face the challenge of targeting this pathway therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure of NFAT.
Figure 2: Calcium signalling and activation of NFATs.
Figure 3: NFATs promote tumour cell migration through paracrine and autocrine mechanisms.
Figure 4: NFATs promote tumour angiogenesis.
Figure 5: Multiple roles for NFATs in the heterotypic interactions of the tumour microenvironment.

Similar content being viewed by others

References

  1. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109 S67–79 (2002).

    CAS  PubMed  Google Scholar 

  2. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    CAS  PubMed  Google Scholar 

  3. Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science 241, 202–205 (1988).

    CAS  PubMed  Google Scholar 

  4. Jauliac, S. et al. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biol. 4, 540–544 (2002). This is the first study to demonstrate that NFATs are pro-migration and invasion transcription factors in breast cancer.

    CAS  PubMed  Google Scholar 

  5. Medyouf, H. et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Med. 13, 736–741 (2007).

    CAS  PubMed  Google Scholar 

  6. Ryeom, S. et al. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 13, 420–431 (2008).

    CAS  PubMed  Google Scholar 

  7. Imamura, R. et al. Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells. J. Immunol. 161, 3455–3463 (1998).

    CAS  PubMed  Google Scholar 

  8. Chuvpilo, S. et al. Multiple NF-ATc isoforms with individual transcriptional properties are synthesized in T lymphocytes. J. Immunol. 162, 7294–7301 (1999).

    CAS  PubMed  Google Scholar 

  9. Chuvpilo, S. et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 10, 261–269 (1999).

    CAS  PubMed  Google Scholar 

  10. Chen, L., Glover, J. N., Hogan, P. G., Rao, A. & Harrison, S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998).

    CAS  PubMed  Google Scholar 

  11. Lopez-Rodriguez, C., Aramburu, J., Rakeman, A. S. & Rao, A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl Acad. Sci. USA 96, 7214–7219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl Acad. Sci. USA 96, 2538–2542 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, T. T., Xiong, Q., Graef, I. A., Crabtree, G. R. & Chow, C. W. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol. Cell. Biol. 25, 907–920 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Giffin, M. J. et al. Structure of NFAT1 bound as a dimer to the HIV-1 LTR κB element. Nature Struct. Biol. 10, 800–806 (2003).

    CAS  PubMed  Google Scholar 

  15. Jain, J., McCaffrey, P. G., Valge-Archer, V. E. & Rao, A. Nuclear factor of activated T cells contains Fos and Jun. Nature 356, 801–804 (1992).

    CAS  PubMed  Google Scholar 

  16. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nature Rev. Immunol. 5, 472–484 (2005).

    CAS  Google Scholar 

  18. Penna, A. et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunol. 9, 432–443 (2008).

    CAS  Google Scholar 

  20. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    CAS  PubMed  Google Scholar 

  21. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    CAS  PubMed  Google Scholar 

  22. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cahalan, M. D. STIMulating store-operated Ca2+ entry. Nature Cell Biol. 11, 669–677 (2009).

    CAS  PubMed  Google Scholar 

  24. Gwack, Y., Feske, S., Srikanth, S., Hogan, P. G. & Rao, A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42, 145–156 (2007).

    CAS  PubMed  Google Scholar 

  25. Okamura, H. et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol. Cell 6, 539–550 (2000).

    CAS  PubMed  Google Scholar 

  26. Zhu, J. & McKeon, F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256–260 (1999).

    CAS  PubMed  Google Scholar 

  27. Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997). The first study demonstrating that GSK3 is a nuclear export kinase for NFAT.

    CAS  PubMed  Google Scholar 

  28. Neal, J. W. & Clipstone, N. A. Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J. Biol. Chem. 276, 3666–3673 (2000).

    PubMed  Google Scholar 

  29. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    CAS  Google Scholar 

  30. Okamura, H. et al. A conserved docking motif for CK1 binding controls the nuclear localizationof NFAT1. Mol. Cell. Biol. 24, 4184–4195 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 (1998).

    CAS  PubMed  Google Scholar 

  32. Chow, C. W., Dong, C., Flavell, R. A. & Davis, R. J. c-Jun NH2-terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Mol. Cell. Biol. 20, 5227–5234 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, T. T., Xiong, Q., Enslen, H., Davis, R. J. & Chow, C. W. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol. Cell. Biol. 22, 3892–3904 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650 (2006).

    CAS  PubMed  Google Scholar 

  35. Arron, J. R. et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595–600 (2006). References 34 and 35 define DYRKs as the long-sought-after export and maintenance kinases for NFATs.

    CAS  PubMed  Google Scholar 

  36. Nayak, A. et al. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J. Biol. Chem. 284, 10935–10946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Terui, Y., Saad, N., Jia, S., McKeon, F. & Yuan, J. Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem. 279, 28257–28265 (2004).

    CAS  PubMed  Google Scholar 

  38. Yoeli-Lerner, M. et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20, 539–550 (2005). This paper shows that, in breast cancer cells, NFAT1 is ubiquitylated by the E3 ligase MDM2, which targets it for degradation.

    CAS  PubMed  Google Scholar 

  39. Yoeli-Lerner, M., Chin, Y. R., Hansen, C. K. & Toker, A. Akt/protein kinase B and glycogen synthase kinase-3β signaling pathway regulates cell migration through the NFAT1 transcription factor. Mol. Cancer Res. 7, 425–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Neal, J. W. & Clipstone, N. A. A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J. Biol. Chem. 278, 17246–17254 (2003).

    CAS  PubMed  Google Scholar 

  41. Buchholz, M. et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J. 25, 3714–3724 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Robbs, B. K., Cruz, A. L., Werneck, M. B., Mognol, G. P. & Viola, J. P. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol. Cell. Biol. 28, 7168–7181 (2008). This paper shows that, in fibroblasts, distinct NFAT isoforms have non-overlapping roles as oncogenes and tumour suppressors, as revealed in both in vitro studies and mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marafioti, T. et al. The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br. J. Haematol. 128, 333–342 (2005).

    CAS  PubMed  Google Scholar 

  44. Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lin-Lee, Y. C. & Ford, R. J. Constitutive NF-κB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 106, 3940–3947 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Google Scholar 

  48. Jonsson, M., Dejmek, J., Bendahl, P. O. & Andersson, T. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62, 409–416 (2002).

    CAS  PubMed  Google Scholar 

  49. Dejmek, J., Safholm, A., Kamp Nielsen, C., Andersson, T. & Leandersson, K. Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1α signaling in human mammary epithelial cells. Mol. Cell. Biol. 26, 6024–6036 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabinovitz, I. & Mercurio, A. M. The integrin α6β4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin- containing motility structures. J. Cell Biol. 139, 1873–1884 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mercurio, A. M. & Rabinovitz, I. Towards a mechanistic understanding of tumor invasion-lessons from the α6β4 integrin. Semin. Cancer Biol. 11, 129–141 (2001).

    CAS  PubMed  Google Scholar 

  52. Yiu, G. K. & Toker, A. NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J. Biol. Chem. 281, 12210–12217 (2006).

    CAS  PubMed  Google Scholar 

  53. Chen, M. & O'Connor, K., L., Integrin α6β4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene 24, 5125–5130 (2005).

    CAS  PubMed  Google Scholar 

  54. Stracke, M. L. et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 267, 2524–2529 (1992).

    CAS  PubMed  Google Scholar 

  55. Yang, S. Y. et al. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin. Exp. Metastasis 19, 603–608 (2002).

    CAS  PubMed  Google Scholar 

  56. Liu, S. et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15, 539–550 (2009). A recent study that highlights the potent metastatic activity of autotaxin and its product LPA in breast cancer progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, H. et al. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration In vitro and causes tumor regression In vivo. Cancer Res. 69, 5441–5449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mott, J. D. & Werb, Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16, 558–564 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol. 2, 251–275 (2007).

    CAS  PubMed  Google Scholar 

  60. Dvorak, H. F. Discovery of vascular permeability factor (VPF). Exp. Cell Res. 312, 522–526 (2006).

    CAS  PubMed  Google Scholar 

  61. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    CAS  PubMed  Google Scholar 

  62. Hernandez, G. L. et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med. 193, 607–620 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    CAS  PubMed  Google Scholar 

  64. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Armesilla, A. L. et al. Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. Mol. Cell. Biol. 19, 2032–2043 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cockerill, G. W. et al. Regulation of granulocyte-macrophage colony-stimulating factor and E-selectin expression in endothelial cells by cyclosporin A and the T-cell transcription factor NFAT. Blood 86, 2689–2698 (1995).

    CAS  PubMed  Google Scholar 

  67. Jinnin, M. et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Med. 14, 1236–1246 (2008). NFAT activation is shown to lead to expression of VEGFRs and downstream signalling in haemangiomas, which are highly vascularized benign lesions typically seen in children.

    CAS  PubMed  Google Scholar 

  68. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355, 165–169 (2000).

    CAS  PubMed  Google Scholar 

  69. Baek, K. H. et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459, 1126–1130 (2009). References 69 and 6 reveal that DSCR1, a suppressor of calcineurin activity in endothelial cells, can function as a suppressor of tumour growth by attenuating NFAT activity and VEGFA induction, as observed in patients with Down's syndrome who have increased expression of DSCR1.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Qin, L. et al. Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol. Cancer Res. 4, 811–820 (2006).

    CAS  PubMed  Google Scholar 

  71. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nature Rev. Cancer 2, 573–583 (2002).

    CAS  Google Scholar 

  72. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med. 7, 192–198 (2001).

    CAS  PubMed  Google Scholar 

  73. Karpanen, T. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790 (2001).

    CAS  PubMed  Google Scholar 

  74. Kulkarni, R. M., Greenberg, J. M. & Akeson, A. L. NFATc1 regulates lymphatic endothelial development. Mech. Dev. 126, 350–365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  77. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    CAS  PubMed  Google Scholar 

  78. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001). Chemokines and chemokine receptors are shown to be highly upregulated and functional for metastatic dissemination of breast cancer cells in this paper.

    CAS  PubMed  Google Scholar 

  79. Karnoub, A. E. & Weinberg, R. A. Chemokine networks and breast cancer metastasis. Breast Dis. 26, 75–85 (2006).

    CAS  PubMed  Google Scholar 

  80. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  81. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    CAS  PubMed  Google Scholar 

  82. Kaufman, D. B. et al. Immunosuppression: practice and trends. Am. J. Transplant 4 Suppl. 9, 38–53 (2004).

    PubMed  Google Scholar 

  83. Martinez-Martinez, S. & Redondo, J. M. Inhibitors of the calcineurin/NFAT pathway. Curr. Med. Chem. 11, 997–1007 (2004).

    CAS  PubMed  Google Scholar 

  84. Matsuda, S. & Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology 47, 119–125 (2000).

    CAS  PubMed  Google Scholar 

  85. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    CAS  PubMed  Google Scholar 

  86. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    CAS  PubMed  Google Scholar 

  87. Rezzani, R. Cyclosporine A and adverse effects on organs: histochemical studies. Prog. Histochem. Cytochem. 39, 85–128 (2004).

    CAS  PubMed  Google Scholar 

  88. Dantal, J. & Soulillou, J. P. Immunosuppressive drugs and the risk of cancer after organ transplantation. N. Engl. J. Med. 352, 1371–1373 (2005).

    CAS  PubMed  Google Scholar 

  89. Aramburu, J. et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 627–637 (1998).

    CAS  PubMed  Google Scholar 

  90. Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133 (1999).

    CAS  PubMed  Google Scholar 

  91. Noguchi, H. et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nature Med. 10, 305–309 (2004).

    CAS  PubMed  Google Scholar 

  92. Karanam, B. V. et al. Disposition of L-732531, a potent immunosuppressant, in rats and baboons. Drug Metab. Dispos. 26, 949–957 (1998).

    CAS  PubMed  Google Scholar 

  93. Abel, M. D. et al. ISATX247: a novel calcineurin inhibitor. J. Heart Lung Transplant 20, 161 (2001).

    PubMed  Google Scholar 

  94. Brundage, R. A., Fogarty, K. E., Tuft, R. A. & Fay, F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991).

    CAS  PubMed  Google Scholar 

  95. Evans, J. H. & Falke, J. J. Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc. Natl Acad. Sci. USA 104, 16176–16181 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wei, C. et al. Calcium flickers steer cell migration. Nature 457, 901–905 (2009).

    CAS  PubMed  Google Scholar 

  97. Yang, S., Zhang, J. J. & Huang, X. Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124–134 (2009). This paper reveals that the store-operated calcium channels STIM1 and ORAI1 promote calcium signals that are required for cell migration.

    CAS  PubMed  Google Scholar 

  98. Szado, T. et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl Acad. Sci. USA 105, 2427–2432 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Masuda, E. S., Imamura, R., Amasaki, Y., Arai, K. & Arai, N. Signalling into the T-cell nucleus: NFAT regulation. Cell Signal 10, 599–611 (1998).

    CAS  PubMed  Google Scholar 

  100. Horsley, V. & Pavlath, G. K. NFAT: ubiquitous regulator of cell differentiation and adaptation. J. Cell Biol. 156, 771–774 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Amasaki, Y. et al. A constitutively nuclear form of NFATx shows efficient transactivation activity and induces differentiation of CD4+CD8+ T cells. J. Biol. Chem. 277, 25640–25648 (2002).

    CAS  PubMed  Google Scholar 

  102. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    CAS  PubMed  Google Scholar 

  103. Graef, I. A., Chen, F., Chen, L., Kuo, A. & Crabtree, G. R. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105, 863–875 (2001).

    CAS  PubMed  Google Scholar 

  104. Rengarajan, J., Tang, B. & Glimcher, L. H. NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naive TH cells. Nature Immunol. 3, 48–54 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Toker laboratory for many useful discussions and suggestions. We apologize to colleagues whose work could not be cited owing to space limitations. The Toker laboratory is funded by grants from the US National Institutes of Health and National Cancer Institute, the Department of Defense and the Susan G. Komen Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Toker.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

cyclosporin A

FK506

Pathway Interaction Database

canonical pathway

PI3K–Akt pathway

FURTHER INFORMATION

Alex Toker's homepage

Glossary

Store-operated channels

Calcium channels in the plasma membrane that allow the influx of extracellular calcium in response to the emptying of intracellular calcium stores such as the ER. Also known as CRAC channels.

Rel family transcription factors

Transcription factors with an N-terminal Rel-homology domain that is responsible for nuclear localization, dimerization and DNA binding.

Priming kinase

A serine/threonine kinase (such as a casein kinase) that, by phosphorylating specific residues in proteins, enables the subsequent phosphorylation of additional residues downstream of the priming sites, typically mediated by distinct kinases.

Sumoylation

Similar to ubiquitylation in that proteins are post-translationally modified with small ubiquitin-like modifier (SUMO). Unlike ubiquitylation, sumoylation does not target proteins for degradation, instead it facilitates nuclear–cytoplasmic shuttling, transcription and cell cycle progression.

EMT

A complex process in which genetic and epigenetic events lead to epithelial cells acquiring a mesenchymal architecture concomitant with increased cell motility. Typically associated with the loss of E-cadherin expression.

Hemidesmosomes

Rivet-like structures found in epithelial cells and also keratinocytes that attach these cells to the extracellular matrix. In epithelial cells, hemidesmosomes couple to integrins.

Haemangioma

A benign self-involuting mass of proliferating endothelial cells that typically presents in children.

VEGFR

A receptor tyrosine kinase on the surface of endothelial cells that activates downstream signalling pathways subsequent to binding VEGF. VEGFR1 is also known as FLT-1, and VEGFR2 is also known as KDR and FLK1.

Chemokines

A family of secreted cytokines that regulate both immune surveillance and inflammatory responses on infection.

Epstein-Barr virus

EBV. Herpesvirus that can transform B cells. It is implicated in the aetiology of several different lymphoid malignancies, such as Burkitt's lymphoma.

Angiogenic switch

The transition of a non-vascularized solid tumour to a highly vascularized state following recruitment of blood vessels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancini, M., Toker, A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9, 810–820 (2009). https://doi.org/10.1038/nrc2735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing