Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants

Abstract

Most premenopausal women diagnosed with primary breast cancer receive adjuvant chemotherapy, and many experience chemotherapy-induced ovarian failure (CIOF). CIOF is associated with menopausal symptoms, fertility concerns and long-term implications including bone loss. Ironically, CIOF might confer a disease-specific benefit to women whose breast cancers express hormone receptors. Risk factors of CIOF include the woman's age at the time of therapy, and the type, dose and schedule of chemotherapy. Because inherited genetic factors have an important role in determining who will experience CIOF, genetic testing has the potential to provide optimal counselling about risks and possible interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ovarian–pituitary axis.
Figure 2: Pathway of cytochrome-P450-catalysed cyclophosphamide metabolism.
Figure 3: Associations between genotypes and the development of premature ovarian failure.

Similar content being viewed by others

References

  1. Bines, J., Oleske, D. M. & Cobleigh, M. A. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J. Clin. Oncol. 14, 1718–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Adami, H. O., Malker, B., Holmberg, L., Persson, I. & Stone, B. The relation between survival and age at diagnosis in breast cancer. N. Engl. J. Med. 315, 559–563 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Peto, R., Boreham, J., Clarke, M., Davies, C. & Beral, V. UK and USA breast cancer deaths down 25% in year 2000 at ages 20–69 years. Lancet 355, 1822 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Berry, D. A. et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 353, 1784–1792 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Isaacs, C., Stearns, V. & Hayes, D. F. New prognostic factors for breast cancer recurrence. Semin. Oncol. 28, 53–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Bast, R. C., Jr et al. 2000 update of recommendations for the use of tumour markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J. Clin. Oncol. 19, 1865–1878 (2001).

    Article  PubMed  Google Scholar 

  7. Osborne, C. K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 339, 1609–1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Goswami, D. & Conway, G. S. Premature ovarian failure. Hum. Reprod. Update 11, 391–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359, 2131–2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Goss, P. E. et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 349, 1793–1802 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Coombes, R. C. et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N. Engl. J. Med. 350, 1081–1092 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Thurlimann, B. et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N. Engl. J. Med. 353, 2747–2757 (2005).

    Article  PubMed  Google Scholar 

  13. Bonadonna, G., Rossi, A., Valagussa, P. & Veronesi, U. Actual data on efficacy of surgical adjuvant chemotherapy with CMF in breast cancer. Arch. Geschwulstforsch 48, 659 (1978).

    CAS  PubMed  Google Scholar 

  14. Fisher, B., Slack, N., Katrych, D. & Wolmark, N. Ten year follow-up results of patients with carcinoma of the breast in a cooperative clinical trial evaluating surgical adjuvant chemotherapy. Surg. Gynecol. Obstet. 140, 528–534 (1975).

    CAS  PubMed  Google Scholar 

  15. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Goldhirsch, A. et al. Adjuvant therapy for very young women with breast cancer: need for tailored treatments. J. Natl Cancer Inst. Monogr. 30, 44–51 (2001).

    Article  Google Scholar 

  18. Ganz, P. A., Greendale, G. A., Petersen, L., Kahn, B. & Bower, J. E. Breast cancer in younger women: reproductive and late health effects of treatment. J. Clin. Oncol. 21, 4184–4193 (2003).

    Article  PubMed  Google Scholar 

  19. Riggs, B. L. & Melton, L. J., 3rd. Clinical review 8: clinical heterogeneity of involutional osteoporosis: implications for preventive therapy. J. Clin. Endocrinol. Metab. 70, 1229–1232 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Erlik, Y. et al. Association of waking episodes with menopausal hot flushes. JAMA 245, 1741–1744 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Grundy, S. M. Guidelines for cholesterol management: recommendations of the National Cholesterol Education Program's Adult Treatment Panel II. Heart Dis. Stroke 3, 123–127 (1994).

    CAS  PubMed  Google Scholar 

  22. Barrett-Connor, E. & Bush, T. L. Estrogen and coronary heart disease in women. JAMA 265, 1861–1867 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Crandall, C., Petersen, L., Ganz, P. A. & Greendale, G. A. Association of breast cancer and its therapy with menopause-related symptoms. Menopause 11, 519–530 (2004).

    Article  PubMed  Google Scholar 

  24. Davidson, N. E. et al. Chemoendocrine therapy for premenopausal women with axillary lymph node-positive, steroid hormone receptor-positive breast cancer: results from INT 0101 (E5188). J. Clin. Oncol. 23, 5973–5982 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Robert, N. J. et al. Phase III comparison of tamoxifen versus tamoxifen with ovarian ablation in premenopausal women with axillary node-negative receptor-positive breast cancer ≤ 3 cm. Proc. Am. Soc. Clin. Oncol. 22, abstr. 16 (2003).

    Google Scholar 

  26. Duffy, L. S., Greenberg, D. B., Younger, J. & Ferraro, M. G. Iatrogenic acute estrogen deficiency and psychiatric syndromes in breast cancer patients. Psychosomatics 40, 304–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Litt, M. D., Tennen, H., Affleck, G. & Klock, S. Coping and cognitive factors in adaptation to in vitro fertilization failure. J. Behav. Med. 15, 171–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Schover, L. R. Sexuality and body image in younger women with breast cancer. J. Natl Cancer Inst. Monogr. 16, 177–182 (1994).

    Google Scholar 

  29. Wright, J. et al. Psychosocial distress and infertility: men and women respond differently. Fertil. Steril. 55, 100–108 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Partridge, A. H. et al. Web-based survey of fertility issues in young women with breast cancer. J. Clin. Oncol. 22, 4174–4183 (2004).

    Article  PubMed  Google Scholar 

  31. Duffy, C. M., Allen, S. M. & Clark, M. A. Discussions regarding reproductive health for young women with breast cancer undergoing chemotherapy. J. Clin. Oncol. 23, 766–773 (2005).

    Article  PubMed  Google Scholar 

  32. Thewes, B., Meiser, B., Rickard, J. & Friedlander, M. The fertility- and menopause-related information needs of younger women with a diagnosis of breast cancer: a qualitative study. Psychooncology 12, 500–511 (2003).

    Article  PubMed  Google Scholar 

  33. Winer, E. P. et al. American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004. J. Clin. Oncol. 23, 619–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Burstein, H. J. et al. Inadvertent use of aromatase inhibitors in patients with breast cancer with residual ovarian function: cases and lessons. Clin. Breast Cancer 7, 158–161 (2006).

    Article  PubMed  Google Scholar 

  35. Smith, I. E. et al. Adjuvant aromatase inhibitors for early breast cancer after chemotherapy-induced amenorrhoea: caution and suggested guidelines. J. Clin. Oncol. 24, 2444–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Goodwin, P. J., Ennis, M., Pritchard, K. I., Trudeau, M. & Hood, N. Risk of menopause during the first year after breast cancer diagnosis. J. Clin. Oncol. 17, 2365–2370 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Petrek, J. A. et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J. Clin. Oncol. 24, 1045–1051 (2006).

    Article  PubMed  Google Scholar 

  38. Skinner, M. K. Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461–471 (2005).

    Article  PubMed  Google Scholar 

  39. Moore, R. K. & Shimasaki, S. Molecular biology and physiological role of the oocyte factor, BMP-15. Mol. Cell Endocrinol. 234, 67–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Blumenfeld, Z. Preservation of fertility and ovarian function and minimalization of chemotherapy associated gonadotoxicity and premature ovarian failure: the role of inhibin-A and-B as markers. Mol. Cell Endocrinol. 187, 93–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cook, C. L., Siow, Y., Taylor, S. & Fallat, M. E. Serum mullerian-inhibiting substance levels during normal menstrual cycles. Fertil. Steril. 73, 859–861 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. de Vet, A., Laven, J. S., de Jong, F. H., Themmen, A. P. & Fauser, B. C. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil. Steril. 77, 357–362 (2002).

    Article  PubMed  Google Scholar 

  43. van Rooij, I. A. et al. Anti-mullerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause 11, 601–606 (2004).

    Article  PubMed  Google Scholar 

  44. van Noord, P. A., Dubas, J. S., Dorland, M., Boersma, H. & te Velde, E. Age at natural menopause in a population-based screening cohort: the role of menarche, fecundity, and lifestyle factors. Fertil. Steril. 68, 95–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Khaw, K. T. Epidemiology of the menopause. Br. Med. Bull. 48, 249–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Cramer, D. W., Xu, H. & Harlow, B. L. Family history as a predictor of early menopause. Fertil. Steril. 64, 740–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Delrio, G. et al. Hypothalamic-pituitary-ovarian axis in women with operable breast cancer treated with adjuvant CMF and tamoxifen. Tumori. 72, 53–61 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Jordan, V. C., Fritz, N. F. & Tormey, D. C. Endocrine effects of adjuvant chemotherapy and long-term tamoxifen administration on node-positive patients with breast cancer. Cancer Res. 47, 624–630 (1987).

    CAS  PubMed  Google Scholar 

  49. Murugesan, K., Rao, S. V., Vij, U., Sarin, R. & Kapur, B. M. Effect of chemotherapy on gonadal function in women with breast cancer. Indian J. Med. Res. 87, 42–45 (1988).

    CAS  PubMed  Google Scholar 

  50. Rose, D. P. & Davis, T. E. Ovarian function in patients receiving adjuvant chemotherapy for breast cancer. Lancet 1, 1174–1176 (1977).

    Article  CAS  PubMed  Google Scholar 

  51. Rose, D. P. & Davis, T. E. Effects of adjuvant chemohormonal therapy on the ovarian and adrenal function of breast cancer patients. Cancer Res. 40, 4043–4047 (1980).

    CAS  PubMed  Google Scholar 

  52. Samaan, N. A., deAsis, D. N., Jr., Buzdar, A. U. & Blumenschein, G. R. Pituitary-ovarian function in breast cancer patients on adjuvant chemoimmunotherapy. Cancer 41, 2084–2087 (1978).

    Article  CAS  PubMed  Google Scholar 

  53. Ataya, K. M., McKanna, J. A., Weintraub, A. M., Clark, M. R. & LeMaire, W. J. A luteinizing hormone-releasing hormone agonist for the prevention of chemotherapy-induced ovarian follicular loss in rats. Cancer Res. 45, 3651–3656 (1985).

    CAS  PubMed  Google Scholar 

  54. Warne, G. L., Fairley, K. F., Hobbs, J. B. & Martin, F. I. Cyclophosphamide-induced ovarian failure. N. Engl. J. Med. 289, 1159–1162 (1973).

    Article  CAS  PubMed  Google Scholar 

  55. Chapman, R. M. Effect of cytotoxic therapy on sexuality and gonadal function. Semin. Oncol. 9, 84–94 (1982).

    CAS  PubMed  Google Scholar 

  56. Gradishar, W. J. & Schilsky, R. L. Ovarian function following radiation and chemotherapy for cancer. Semin. Oncol. 16, 425–436 (1989).

    CAS  PubMed  Google Scholar 

  57. Schilsky, R. L., Lewis, B. J., Sherins, R. J. & Young, R. C. Gonadal dysfunction in patients receiving chemotherapy for cancer. Ann. Intern. Med. 93, 109–114 (1980).

    Article  CAS  PubMed  Google Scholar 

  58. Sobrinho, L. G., Levine, R. A. & DeConti, R. C. Amenorrhea in patients with Hodgkin's disease treated with antineoplastic agents. Am. J. Obstet. Gynecol. 109, 135–139 (1971).

    Article  CAS  PubMed  Google Scholar 

  59. Poikonen, P., Saarto, T., Elomaa, I., Joensuu, H. & Blomqvist, C. Prognostic effect of amenorrhoea and elevated serum gonadotropin levels induced by adjuvant chemotherapy in premenopausal node-positive breast cancer patients. Eur. J. Cancer 36, 43–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Richards, M. A. et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in patients with axillary node-positive breast cancer: an update of the Guy's/Manchester trial. J. Clin. Oncol. 8, 2032–2039 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Bianco, A. R. et al. Prognostic role of amenorrhea induced by adjuvant chemotherapy in premenopausal patients with early breast cancer. Br. J. Cancer 63, 799–803 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brincker, H., Mouridsen, H. T. & Andersen, K. W. Adjuvant chemotherapy with cyclophosphamide or CMF in premenopausal women with stage II breast cancer. Breast Cancer Res. Treat. 3, 91–95 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Goldhirsch, A., Gelber, R. D. & Castiglione, M. The magnitude of endocrine effects of adjuvant chemotherapy for premenopausal breast cancer patients. The International Breast Cancer Study Group. Ann. Oncol. 1, 183–188 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Padmanabhan, N., Wang, D. Y., Moore, J. W. & Rubens, R. D. Ovarian function and adjuvant chemotherapy for early breast cancer. Eur. J. Cancer. Clin. Oncol. 23, 745–748 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Reyno, L. M. et al. Impact of cyclophosphamide on relationships between carboplatin exposure and response or toxicity when used in the treatment of advanced ovarian cancer. J. Clin. Oncol. 11, 1156–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Levine, M. N. et al. A randomized trial comparing 12 weeks versus 36 weeks of adjuvant chemotherapy in stage II breast cancer. J. Clin. Oncol. 8, 1217–1225 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Martin, M. et al. Adjuvant docetaxel for node-positive breast cancer. N. Engl. J. Med. 352, 2302–2313 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Buzdar, A. U. et al. Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin. Cancer Res. 8, 1073–1079 (2002).

    CAS  PubMed  Google Scholar 

  69. Anders, C. et al. Inhibin A and B as predictive markers for chemotherapy-induced premature ovarian failure (POF) among premenopausal women with early stage breast cancer (ESBC). Breast Cancer Res. Treat. 94, (suppl. 1) abstr. 1027 (2005).

    Google Scholar 

  70. de Bruin, J. P. et al. The role of genetic factors in age at natural menopause. Hum. Reprod. 16, 2014–2018 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Bentley, D. R. DNA sequence variation of Homo sapiens. Cold Spring Harb. Symp. Quant. Biol. 68, 55–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Di Pasquale, E. et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J. Clin. Endocrinol. Metab. 91, 1976–1979 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Dixit, H. et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 119, 408–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Brambilla, D. J. & McKinlay, S. M. A prospective study of factors affecting age at menopause. J. Clin. Epidemiol. 42, 1031–1039 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Gold, E. B. et al. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am. J. Epidemiol. 153, 865–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Piersma, D. et al. A common polymorphism renders the luteinizing hormone receptor protein more active by improving signal peptide function and predicts adverse outcome in breast cancer patients. J. Clin. Endocrinol. Metab. 91, 1470–1476 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Evans, W. E. & McLeod, H. L. Pharmacogenomics--drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Flockhart, D. Clinical Pharmacogenetics, (Academic Press, 2001).

    Google Scholar 

  79. Weinshilboum, R. M. Human pharmacogenetics: introduction. Fed. Proc. 43, 2295–2297 (1984).

    CAS  PubMed  Google Scholar 

  80. Takada, K. et al. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis Rheum. 50, 2202–2210 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Chang, T. K., Weber, G. F., Crespi, C. L. & Waxman, D. J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53, 5629–5637 (1993).

    CAS  PubMed  Google Scholar 

  82. Chang, T. K., Yu, L., Goldstein, J. A. & Waxman, D. J. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7, 211–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Ren, S., Yang, J. S., Kalhorn, T. F. & Slattery, J. T. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res. 57, 4229–4235 (1997).

    CAS  PubMed  Google Scholar 

  84. Roy, P., Yu, L. J., Crespi, C. L. & Waxman, D. J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 27, 655–666 (1999).

    CAS  PubMed  Google Scholar 

  85. Kuehl, P. et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genet. 27, 383–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Granvil, C. P., Madan, A., Sharkawi, M., Parkinson, A. & Wainer, I. W. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab. Dispos. 27, 533–541 (1999).

    CAS  PubMed  Google Scholar 

  87. Dickmann, L. J. et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol. Pharmacol. 60, 382–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Rettie, A. E., Haining, R. L., Bajpai, M. & Levy, R. H. A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res. 35, 253–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Takanashi, K. et al. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 10, 95–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yamazaki, H. et al. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem. Pharmacol. 56, 243–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Gill, H. J. et al. The effect of genetic polymorphisms in CYP2C9 on sulphamethoxazole N-hydroxylation. Pharmacogenetics 9, 43–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Ieiri, I. et al. Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis. Ther. Drug. Monit. 22, 237–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Yasar, U. et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab. Dispos. 29, 1051–1056 (2001).

    CAS  PubMed  Google Scholar 

  94. Miners, J. O., Coulter, S., Birkett, D. J. & Goldstein, J. A. Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics 10, 267–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kidd, R. S. et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 9, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Sullivan-Klose, T. H. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Steward, D. J. et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361–367 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. McCrea, J. B. et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin. Pharmacol. Ther. 65, 348–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, C. R., Goldstein, J. A. & Pieper, J. A. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Desta, Z., Zhao, X., Shin, J. G. & Flockhart, D. A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41, 913–958 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Wrighton, S. A., Stevens, J. C., Becker, G. W. & VandenBranden, M. Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4'-hydroxylation. Arch. Biochem. Biophys. 306, 240–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Goldstein, J. A. et al. Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans. Biochemistry 33, 1743–1752 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Lobo, R. A. Potential options for preservation of fertility in women. N. Engl. J. Med. 353, 64–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, S. J. et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J. Clin. Oncol. 24, 2917–2931 (2006).

    Article  PubMed  Google Scholar 

  105. Fox, K., Scialla, J. & Moore, H. Preventing chemotherapy-related amenorrhea using leuprolide during adjuvant chemotherapy for early-stage breast cancer. Proc. Am. Soc. Clin. Oncol. 22, 13 (2003).

    Google Scholar 

  106. Recchia, F. et al. Goserelin as ovarian protection in the adjuvant treatment of premenopausal breast cancer: a phase II pilot study. Anticancer Drugs 13, 417–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Urruticoechea, A., Walsh, G., Rigg, A., Dowsett, M. & Smith, I. Ovarian function protection with goserelin during adjuvant chemotherapy in pre-menopausal women with early breast cancer. Breast Cancer Res. Treat. 88 (Suppl. 1), S229 (2004).

    Google Scholar 

  108. Holmberg, L. & Anderson, H. HABITS (hormonal replacement therapy after breast cancer — is it safe?), a randomised comparison: trial stopped. Lancet 363, 453–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Levgur, M. Hormone therapy for women after breast cancer: a review. J. Reprod. Med. 49, 510–526 (2004).

    CAS  PubMed  Google Scholar 

  110. Ganz, P. A. & Greendale, G. A. Menopause and breast cancer: addressing the secondary health effects of adjuvant chemotherapy. J. Clin. Oncol. 19, 3303–3305 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Stearns, V. et al. Hot flushes. Lancet 360, 1851–1861 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Oktay, K., Buyuk, E., Libertella, N., Akar, M. & Rosenwaks, Z. Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J. Clin. Oncol. 23, 4347–4353 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Adjuvant ovarian ablation versus CMF chemotherapy in premenopausal women with pathological stage II breast carcinoma: the Scottish trial. Scottish Cancer Trials Breast Group and ICRF Breast Unit, Guy's Hospital, London. Lancet 341, 1293–1298 (1993).

  114. Partridge, A. H., Burstein, H. J. & Winer, E. P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr. 30, 135–142 (2001).

    Article  Google Scholar 

  115. Tancini, G. et al. Preliminary 3-year results of 12 versus 6 cycles of surgical adjuvant CMF in premenopausal breast cancer. Cancer Clin. Trials 2, 285–292 (1979).

    CAS  PubMed  Google Scholar 

  116. Bryce, C., Shenkier, T., Gelmon, K., Trevisan, C. & Olivotto, I. Menstrual disruption in premenopausal breast cancer patients receiving CMF (IV) vs AC adjuvant chemotherapy. Breast Cancer Res. Treat. 50, 284 (1998).

    Google Scholar 

  117. Burstein, H. J. & Winer, E. P. Primary care for survivors of breast cancer. N. Engl. J. Med. 343, 1086–1094 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Fornier, M. N., Modi, S., Panageas, K. S., Norton, L. & Hudis, C. Incidence of chemotherapy-induced, long-term amenorrhea in patients with breast carcinoma age 40 years and younger after adjuvant anthracycline and taxane. Cancer 104, 1575–1579 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Weber, B. & Luporsi, E. Ovarian toxicity of breast cancer chemotherapy. Eur. J. Cancer 34 (Suppl. 5), S42 (1998).

    Article  Google Scholar 

  120. Kramer, R., Tham, Y., Sexton, K., Friedman, L. & Weiss, H. Chemotherapy-induced amenorrhea is increased in patients treated with adjuvant doxorubicin and cyclophosphamide (AC) followed by a taxane (T). Proc. Am. Soc. Clin. Oncol. 23, 41s (2005).

    Article  Google Scholar 

  121. Swain, S. et al. Amenorrhea in premenopausal women on the doxorubicin (A) and cyclophosphamide (C) docetaxel (T) arm of NSABP B-30: Preliminary results. Proc. Am. Soc. Clin. Oncol. 23, 13s (2005).

    Google Scholar 

Download references

Acknowledgements

D.A.F. is supported by a Pharmacogenetics Research Network grant, and grants from the US National Institutes of Health. D.F.H. is supported by the Fashion Footwear Foundation/QVC Presents Shoes-On-Sale. We wish to thank members of the Pharmacogenetics Network COBRA (Consortium on Breast cancer pharmacogeneomics) team, in particular Z. Desta, T. Skaar and J. Yin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vered Stearns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

FURTHER INFORMATION

Indiana University Division of Clinical Pharmacology homepage

PharmGKB

Drug interactions web site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stearns, V., Schneider, B., Henry, N. et al. Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nat Rev Cancer 6, 886–893 (2006). https://doi.org/10.1038/nrc1992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing