Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology of epithelial ovarian cancer

Abstract

Globally, ovarian cancer is the eighth most common cancer in women, accounting for an estimated 3.7% of cases and 4.7% of cancer deaths in 2020. Until the early 2000s, age-standardized incidence was highest in northern Europe and North America, but this trend has changed; incidence is now declining in these regions and increasing in parts of eastern Europe and Asia. Ovarian cancer is a very heterogeneous disease and, even among the most common type, namely epithelial ovarian cancer, five major clinically and genetically distinct histotypes exist. Most high-grade serous ovarian carcinomas are now recognized to originate in the fimbrial ends of the fallopian tube. This knowledge has led to more cancers being coded as fallopian tube in origin, which probably explains some of the apparent declines in ovarian cancer incidence, particularly in high-income countries; however, it also suggests that opportunistic salpingectomy offers an important opportunity for prevention. The five histotypes share several reproductive and hormonal risk factors, although differences also exist. In this Review, we summarize the epidemiology of this complex disease, comparing the different histotypes, and consider the potential for prevention. We also discuss how changes in the prevalence of risk and protective factors might have contributed to the observed changes in incidence and what this might mean for incidence in the future.

Key points

  • The disease we call ‘ovarian’ cancer encompasses a wide range of tumour types, including cancers that arise in the fallopian tube; changes in coding and reporting make incidence trends over the past decade difficult to interpret.

  • Between 1920 and 1960, successive birth cohorts had lower risk of developing ovarian cancer, although incidence might be increasing again in women born after about 1970.

  • With the recognition that high-grade serous cancers originate in the fallopian tube, salpingectomy (opportunistic or targeted) offers the opportunity for prevention and could delay the need for oophorectomy among women with a high genetic risk.

  • Hormonally related factors, including pregnancy, oral contraceptive use and breastfeeding, reduce the risk of ovarian cancer, particularly the endometrioid and clear cell histotypes; the benefits of newer contraceptive formulations are less clear.

  • Lifestyle exposures, including smoking, obesity and, potentially, sedentary behaviour or inactivity, all increase the risk of a woman developing the less common histotypes but do not appear to affect the risk of developing the most common high-grade serous cancers.

  • If current trends continue, the incidence of ovarian cancer might start to increase, although widespread uptake of salpingectomy and expanded identification and interventions targeting BRCA mutation carriers have the potential to reduce incidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Estimated annual percentage change in ovarian cancer incidence for 20 countries.
Fig. 2: Age-standardized incidence rates of ovarian and ovarian plus serous fallopian tube cancers over time.
Fig. 3: A qualitative summary of ovarian cancer risk factors, by histotypes.
Fig. 4: Relative risks of ovarian and fallopian tube cancer among women aged ≥25 years by year of birth.

Similar content being viewed by others

References

  1. McCluggage, W. G., Singh, N. & Gilks, C. B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020). Histopathology 80, 762–778 (2022).

    Article  PubMed  Google Scholar 

  2. Shih, I. M., Wang, Y. & Wang, T. L. The origin of ovarian cancer species and precancerous landscape. Am. J. Pathol. 191, 26–39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheasley, D. et al. The molecular origin and taxonomy of mucinous ovarian carcinoma. Nat. Commun. 10, 3935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  5. Webb, P. M., Green, A. C. & Jordan, S. J. Trends in hormone use and ovarian cancer incidence in US white and Australian women: implications for the future. Cancer Causes Control. 28, 365–370 (2017).

    Article  PubMed  Google Scholar 

  6. Cabasag, C. J. et al. The influence of birth cohort and calendar period on global trends in ovarian cancer incidence. Int. J. Cancer 146, 749–758 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Ervik, M., Lam, F., Laversanne, M., Ferlay, J. & Bray, F. Global Cancer Observatory: Cancer Over Time https://gco.iarc.fr/overtime (2021).

  8. GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 563–591 (2022).

    Article  Google Scholar 

  9. Long Roche, K. C., Abu-Rustum, N. R., Nourmoussavi, M. & Zivanovic, O. Risk-reducing salpingectomy: let us be opportunistic. Cancer 123, 1714–1720 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Nitschke, A. S., do Valle, H. A., Dawson, L., Kwon, J. S. & Hanley, G. E. Long-term non-cancer risks in people with BRCA mutations following risk-reducing bilateral salpingo-oophorectomy and the role of hormone replacement therapy: a review. Cancers 15, 711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoon, S. H., Kim, S. N., Shim, S. H., Kang, S. B. & Lee, S. J. Bilateral salpingectomy can reduce the risk of ovarian cancer in the general population: a meta-analysis. Eur. J. Cancer 55, 38–46 (2016).

    Article  PubMed  Google Scholar 

  12. Chen, Y., Du, H., Bao, L. & Liu, W. Opportunistic salpingectomy at benign gynecological surgery for reducing ovarian cancer risk: a 10-year single centre experience from China and a literature review. J. Cancer 9, 141–147 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hanley, G. E. et al. Outcomes from opportunistic salpingectomy for ovarian cancer prevention. JAMA Netw. Open 5, e2147343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Darelius, A., Kristjansdottir, B., Dahm-Kahler, P. & Strandell, A. Risk of epithelial ovarian cancer type I and II after hysterectomy, salpingectomy and tubal ligation — a nationwide case-control study. Int. J. Cancer 149, 1544–1552 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Duus, A. H., Zheng, G., Baandrup, L., Faber, M. T. & Kjaer, S. K. Risk of ovarian cancer after salpingectomy and tubal ligation: prospects on histology and time since the procedure. Gynecol. Oncol. 177, 125–131 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Leblanc, E. et al. Prophylactic radical fimbriectomy with delayed oophorectomy in women with a high risk of developing an ovarian carcinoma: results of a prospective national pilot study. Cancers 15, 1141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Webb, P. M. & Jordan, S. J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 41, 3–14 (2017).

    Article  PubMed  Google Scholar 

  18. Peres, L. C. et al. Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int. J. Epidemiol. 47, 460–472 (2018).

    Article  PubMed  Google Scholar 

  19. Jervis, S. et al. Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants. J. Med. Genet. 51, 108–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Flaum, N., Crosbie, E. J., Edmondson, R. J., Smith, M. J. & Evans, D. G. Epithelial ovarian cancer risk: a review of the current genetic landscape. Clin. Genet. 97, 54–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 482–490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Phelan, C. M. et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 49, 680–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Setiawan, V. W. et al. Type I and II endometrial cancers: have they different risk factors? J. Clin. Oncol. 31, 2607–2618 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gong, T. T., Wu, Q. J., Vogtmann, E., Lin, B. & Wang, Y. L. Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int. J. Cancer 132, 2894–2900 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wentzensen, N. et al. Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort consortium. J. Clin. Oncol. 34, 2888–2898 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yarmolinsky, J. et al. Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: a Mendelian randomization analysis. PLoS Med. 16, e1002893 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang, H. et al. Age at menarche and epithelial ovarian cancer risk: a meta-analysis and Mendelian randomization study. Cancer Med. 8, 4012–4022 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, Z. et al. Lifetime ovulatory years and risk of epithelial ovarian cancer: a multinational pooled analysis. J. Natl Cancer Inst. 115, 539–551 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Husby, A., Wohlfahrt, J. & Melbye, M. Pregnancy duration and ovarian cancer risk: a 50-year nationwide cohort study. Int. J. Cancer 151, 1717–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, Y., Sun, W., Xin, X., Wang, W. & Zhang, D. Age at last birth and risk of developing epithelial ovarian cancer: a meta-analysis. Biosci. Rep. 39, BSR20182035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, A. W. et al. Expanding our understanding of ovarian cancer risk: the role of incomplete pregnancies. J. Natl Cancer Inst. 113, 301–308 (2021).

    Article  PubMed  Google Scholar 

  32. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective (World Cancer Research Fund International, 2018).

  33. Gaitskell, K. et al. Histological subtypes of ovarian cancer associated with parity and breastfeeding in the prospective Million Women Study. Int. J. Cancer 142, 281–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Babic, A. et al. Association between breastfeeding and ovarian cancer risk. JAMA Oncol. 6, e200421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kotsopoulos, J. et al. Breastfeeding and the risk of epithelial ovarian cancer among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol. 159, 820–826 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Barcroft, J. F. et al. Fertility treatment and cancers-the eternal conundrum: a systematic review and meta-analysis. Hum. Reprod. 36, 1093–1107 (2021).

    Article  PubMed  Google Scholar 

  37. Lerner-Geva, L. et al. Subfertility, use of fertility treatments and BRCA mutation status and the risk of ovarian cancer. Arch. Gynecol. Obstet. 306, 209–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Dixon-Suen, S. C. et al. The association between hysterectomy and ovarian cancer risk: a population-based record-linkage study. J. Natl Cancer Inst. 111, 1097–1103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khoja, L. et al. Endometriosis and menopausal hormone therapy impact the hysterectomy-ovarian cancer association. Gynecol. Oncol. 164, 195–201 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Ring, L. L. et al. Hysterectomy and risk of epithelial ovarian cancer by histologic type, endometriosis, and menopausal hormone therapy. Cancer Epidemiol. 84, 102359 (2023).

    Article  PubMed  Google Scholar 

  41. Taylor, J. A. et al. Association of hysterectomy and invasive epithelial ovarian and tubal cancer: a cohort study within UKCTOCS. Br. J. Obstet. Gynecol. 129, 110–118 (2022).

    Article  CAS  Google Scholar 

  42. Sieh, W. et al. Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case-control studies. Int. J. Epidemiol. 42, 579–589 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Collaborative Group on Epidemiological Studies of Ovarian Cancer et al. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 371, 303–314 (2008).

    Article  Google Scholar 

  44. Moorman, P. G. et al. Reproductive factors and ovarian cancer risk in African-American women. Ann. Epidemiol. 26, 654–662 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sarink, D. et al. Racial/ethnic differences in ovarian cancer risk: results from the multiethnic cohort study. Cancer Epidemiol. Biomark. Prev. 29, 2019–2025 (2020).

    Article  Google Scholar 

  46. Schrijver, L. H. et al. Oral contraceptive use and ovarian cancer risk for BRCA1/2 mutation carriers: an international cohort study. Am. J. Obstet. Gynecol. 225, 51.e1–51.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Xia, Y. Y. et al. Contraceptive use and the risk of ovarian cancer among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol. 164, 514–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. van Bommel, M. H. D. et al. Contraceptives and cancer risks in BRCA1/2 pathogenic variant carriers: a systematic review and meta-analysis. Hum. Reprod. Update 29, 197–217 (2023).

    Article  PubMed  Google Scholar 

  49. Shafrir, A. L. et al. A prospective cohort study of oral contraceptive use and ovarian cancer among women in the United States born from 1947 to 1964. Cancer Causes Control. 28, 371–383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iversen, L. et al. Association between contemporary hormonal contraception and ovarian cancer in women of reproductive age in Denmark: prospective, nationwide cohort study. Br. Med. J. 362, k3609 (2018).

    Article  Google Scholar 

  51. Haakenstad, A. et al. Measuring contraceptive method mix, prevalence, and demand satisfied by age and marital status in 204 countries and territories, 1970-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 295–327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Balayla, J., Gil, Y., Lasry, A. & Mitric, C. Ever-use of the intra-uterine device and the risk of ovarian cancer. J. Obstet. Gynaecol. 41, 848–853 (2021).

    Article  PubMed  Google Scholar 

  53. Phung, M. T. et al. Depot-medroxyprogesterone acetate use is associated with decreased risk of ovarian cancer: the mounting evidence of a protective role of progestins. Cancer Epidemiol. Biomark. Prev. 30, 927–935 (2021).

    Article  CAS  Google Scholar 

  54. Faber, M. T. et al. Oral contraceptive use and impact of cumulative intake of estrogen and progestin on risk of ovarian cancer. Cancer Causes Control. 24, 2197–2206 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Collaborative Group on Epidemiological Studies of Ovarian Cancer et al. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet 385, 1835–1842 (2015).

    Article  PubMed Central  Google Scholar 

  56. Pearce, C. L., Chung, K., Pike, M. C. & Wu, A. H. Increased ovarian cancer risk associated with menopausal estrogen therapy is reduced by adding a progestin. Cancer 115, 531–539 (2009).

    Article  PubMed  Google Scholar 

  57. Lee, A. W. et al. Estrogen plus progestin hormone therapy and ovarian cancer: a complicated relationship explored. Epidemiology 31, 402–408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fournier, A. et al. Use of menopausal hormone therapy and ovarian cancer risk in a French cohort study. J. Natl Cancer Inst. 115, 671–679 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phung, M. T. et al. Effects of risk factors for ovarian cancer in women with and without endometriosis. Fertil. Steril. 118, 960–969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tsilidis, K. K. et al. Menopausal hormone therapy and risk of ovarian cancer in the European prospective investigation into cancer and nutrition. Cancer Causes Control. 22, 1075–1084 (2011).

    Article  PubMed  Google Scholar 

  61. Lokkegaard, E. C. L. & Morch, L. S. Tibolone and risk of gynecological hormone sensitive cancer. Int. J. Cancer 142, 2435–2440 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Yuk, J. S. & Kim, M. Effects of menopausal hormone therapy on the risk of ovarian cancer: health insurance database in South Korea-based cohort study. Menopause 30, 490–496 (2023).

    Article  PubMed  Google Scholar 

  63. Neven, P. et al. The effect of raloxifene on the incidence of ovarian cancer in postmenopausal women. Gynecol. Oncol. 85, 388–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Tuesley, K. M. et al. Nitrogen-based bisphosphonate use and ovarian cancer risk in women aged 50 years and older. J. Natl Cancer Inst. 114, 878–884 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kvaskoff, M. et al. Endometriosis and cancer: a systematic review and meta-analysis. Hum. Reprod. Update 27, 393–420 (2020).

    Article  Google Scholar 

  66. Harris, H. R. et al. Racial differences in the association of endometriosis and uterine leiomyomas with the risk of ovarian cancer. Obstet. Gynecol. 141, 1124–1138 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Gersekowski, K. et al. Folate intake and ovarian cancer risk among women with endometriosis: a case-control study from the Ovarian Cancer Association Consortium. Cancer Epidemiol. Biomark. Prev. 32, 1087–1096 (2023).

    Article  CAS  Google Scholar 

  68. Harris, H. R. et al. Polycystic ovary syndrome, oligomenorrhea, and risk of ovarian cancer histotypes: evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol. Biomark. 27, 174–182 (2018).

    Article  Google Scholar 

  69. Harris, H. R. et al. Association between genetically predicted polycystic ovary syndrome and ovarian cancer: a Mendelian randomization study. Int. J. Epidemiol. 48, 822–830 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Frandsen, C. L. B. et al. Risk of epithelial ovarian tumors among women with polycystic ovary syndrome: a nationwide population-based cohort study. Int. J. Cancer 153, 958–968 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Yin, W., Falconer, H., Yin, L., Xu, L. & Ye, W. Association between polycystic ovary syndrome and cancer risk. JAMA Oncol. 5, 106–107 (2019).

    Article  PubMed  Google Scholar 

  72. Rasmussen, C. B. et al. Pelvic inflammatory disease and the risk of ovarian cancer and borderline ovarian tumors: a pooled analysis of 13 case-control studies. Am. J. Epidemiol. 185, 8–20 (2017).

    Article  PubMed  Google Scholar 

  73. Stewart, L. M. et al. Risk of high-grade serous ovarian cancer associated with pelvic inflammatory disease, parity and breast cancer. Cancer Epidemiol. 55, 110–116 (2018).

    Article  PubMed  Google Scholar 

  74. Falconer, H., Yin, L., Salehi, S. & Altman, D. Association between pelvic inflammatory disease and subsequent salpingectomy on the risk for ovarian cancer. Eur. J. Cancer 145, 38–43 (2021).

    Article  PubMed  Google Scholar 

  75. Jonsson, S., Jonsson, H., Lundin, E., Haggstrom, C. & Idahl, A. Pelvic inflammatory disease and risk of epithelial ovarian cancer. A national population-based case-control study in Sweden. Am. J. Obstet. Gynecol. 230, 75.e1–75.e15 (2023).

    Article  PubMed  Google Scholar 

  76. Trabert, B. et al. Antibodies against Chlamydia trachomatis and ovarian cancer risk in two independent populations. J. Natl Cancer Inst. 111, 129–136 (2019).

    Article  PubMed  Google Scholar 

  77. Fortner, R. T. et al. Sexually transmitted infections and risk of epithelial ovarian cancer: results from the Nurses’ Health Studies. Br. J. Cancer 120, 855–860 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Idahl, A. et al. Serologic markers of Chlamydia trachomatis and other sexually transmitted infections and subsequent ovarian cancer risk: results from the EPIC cohort. Int. J. Cancer 147, 2042–2052 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, L. H., Zhong, L., Xu, B., Chen, M. & Huang, H. X. Diabetes mellitus and the risk of ovarian cancer: a systematic review and meta-analysis of cohort and case-control studies. BMJ Open 10, e040137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Saarela, K., Tuomilehto, J., Sund, R., Keskimäki, I. & Hartikainen, S. Cancer incidence among Finnish people with type 2 diabetes during 1989–2014. Eur. J. Epidemiol. 34, 259–265 (2019).

    Article  PubMed  Google Scholar 

  81. Yuan, S. et al. Is type 2 diabetes causally associated with cancer risk? evidence from a two-sample mendelian randomization study. Diabetes 69, 1588–1596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pearson-Stuttard, J. et al. Type 2 diabetes and cancer: an umbrella review of observational and mendelian randomization studies. Cancer Epidemiol. Biomark. Prev. 30, 1218–1228 (2021).

    Article  CAS  Google Scholar 

  83. Urpilainen, E., Puistola, U., Boussios, S. & Karihtala, P. Metformin and ovarian cancer: the evidence. Ann. Transl. Med. 8, 1711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hurwitz, L. M. et al. Association of frequent aspirin use with ovarian cancer risk according to genetic susceptibility. JAMA Netw. Open 6, e230666 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baandrup, L., Kjaer, S. K., Olsen, J. H., Dehlendorff, C. & Friis, S. Low-dose aspirin use and the risk of ovarian cancer in Denmark. Ann. Oncol. 26, 787–792 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Hurwitz, L. M. et al. Modification of the association between frequent aspirin use and ovarian cancer risk: a meta-analysis using individual-level data from two ovarian cancer consortia. J. Clin. Oncol. 40, 4207–4217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trabert, B. et al. Analgesic use and ovarian cancer risk: an analysis in the ovarian cancer cohort consortium. J. Natl Cancer Inst. 111, 137–145 (2019).

    Article  PubMed  Google Scholar 

  88. Zeleznik, O. A., Irvin, S. R., Samimi, G. & Trabert, B. The role of statins in the prevention of ovarian and endometrial cancers. Cancer Prev. Res. 16, 191–197 (2023).

    Article  CAS  Google Scholar 

  89. Yarmolinsky, J. et al. Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. J. Am. Med. Assoc. 323, 646–655 (2020).

    Article  CAS  Google Scholar 

  90. Tuesley, K. M. et al. Association between antihypertensive medicine use and risk of ovarian cancer in women aged 50 years and older. Cancer Epidemiol. 86, 102444 (2023).

    Article  PubMed  Google Scholar 

  91. Zhuang, Y. J. et al. The incidence risk of breast and gynecological cancer by antidepressant use: a systematic review and dose-response meta-analysis of epidemiological studies involving 160,727 patients. Front. Oncol. 12, 939636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dixon, S. C. et al. Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. Int. J. Epidemiol. 45, 884–895 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Friedenreich, C. M., Ryder-Burbidge, C. & McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol. Oncol. 15, 790–800 (2021).

    Article  PubMed  Google Scholar 

  95. Vithayathil, M. et al. Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: a Mendelian randomisation study. PLoS Med. 18, e1003706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Olsen, C. M. et al. Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr. Relat. Cancer 20, 251–262 (2013).

    Article  PubMed  Google Scholar 

  97. Aarestrup, J. et al. Childhood overweight, tallness, and growth increase risks of ovarian cancer. Cancer Epidemiol. Biomark. Prev. 28, 183–188 (2019).

    Article  Google Scholar 

  98. Schauer, D. P. et al. Bariatric surgery and the risk of cancer in a large multisite cohort. Ann. Surg. 269, 95–101 (2019).

    Article  PubMed  Google Scholar 

  99. Cannioto, R. et al. Chronic recreational physical inactivity and epithelial ovarian cancer risk: evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol. Biomark. Prev. 25, 1114–1124 (2016).

    Article  Google Scholar 

  100. McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Biller, V. S. et al. Sedentary behaviour in relation to ovarian cancer risk: a systematic review and meta-analysis. Eur. J. Epidemiol. 36, 769–780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen, J. W. et al. Genetic associations of leisure sedentary behaviors and the risk of 15 site-specific cancers: a Mendelian randomization study. Cancer Med. 12, 13623–13636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Collaborative Group on Epidemiological Studies of Ovarian Cancer. Ovarian cancer and body size: individual participant meta-analysis including 25157 women with ovarian cancer from 47 epidemiological studies. PLoS Med. 9, e1001200 (2012).

    Article  PubMed Central  Google Scholar 

  104. Faber, M. T. et al. Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case-control studies. Cancer Causes Control. 24, 989–1004 (2013).

    Article  PubMed  Google Scholar 

  105. Baron, J. A., Nichols, H. B., Anderson, C. & Safe, S. Cigarette smoking and estrogen-related cancer. Cancer Epidemiol. Biomark. Prev. 30, 1462–1471 (2021).

    Article  CAS  Google Scholar 

  106. Ko, K. P. et al. The association between smoking and cancer incidence in BRCA1 and BRCA2 mutation carriers. Int. J. Cancer 142, 2263–2272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gersekowski, K. et al. Risk factors for ovarian cancer by BRCA status: a collaborative case-only analysis. Cancer Epidemiol. Biomark. Prev. https://doi.org/10.1158/1055-9965.EPI-23-0984 (2024).

    Article  Google Scholar 

  108. Endogenous Hormones Breast Cancer Collaborative Group et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br. J. Cancer 105, 709–722 (2011).

    Article  Google Scholar 

  109. Larsson, S. C. et al. Smoking, alcohol consumption, and cancer: a mendelian randomisation study in UK Biobank and international genetic consortia participants. PLoS Med. 17, e1003178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ong, J. S. et al. Association between coffee consumption and overall risk of being diagnosed with or dying from cancer among >300 000 UK Biobank participants in a large-scale Mendelian randomization study. Int. J. Epidemiol. 48, 1447–1456 (2019).

    Article  PubMed  Google Scholar 

  111. Yang, C. S., Wang, X., Lu, G. & Picinich, S. C. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9, 429–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Byrd, D. A. et al. Development and validation of novel dietary and lifestyle inflammation scores. J. Nutr. 149, 2206–2218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yang, J. et al. Dietary inflammatory index and ovarian cancer risk: a meta-analysis. Nutr. Cancer 74, 796–805 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Vojdeman, F. J. et al. Vitamin D levels and cancer incidence in 217,244 individuals from primary health care in Denmark. Int. J. Cancer 145, 338–346 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Keum, N., Lee, D. H., Greenwood, D. C., Manson, J. E. & Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann. Oncol. 30, 733–743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ong, J. S. et al. A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using Mendelian randomization. Nat. Commun. 12, 246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wentzensen, N. & O’Brien, K. M. Talc, body powder, and ovarian cancer: a summary of the epidemiologic evidence. Gynecol. Oncol. 163, 199–208 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. O’Brien, K. M. et al. Association of powder use in the genital area with risk of ovarian cancer. J. Am. Med. Assoc. 323, 49–59 (2020).

    Article  Google Scholar 

  119. Utada, M. et al. Radiation risk of ovarian cancer in atomic bomb survivors: 1958-2009. Radiat. Res. 195, 60–65 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Leung, L. et al. Shift work patterns, chronotype, and epithelial ovarian cancer risk. Cancer Epidemiol. Biomark. Prev. 28, 987–995 (2019).

    Article  Google Scholar 

  121. Liang, X. et al. Sleep characteristics and risk of ovarian cancer among postmenopausal women. Cancer Prev. Res. 14, 55–64 (2021).

    Article  Google Scholar 

  122. Nash, Z. & Menon, U. Ovarian cancer screening: current status and future directions. Best Pract. Res. Clin. Obstet. Gynaecol. 65, 32–45 (2020).

    Article  PubMed  Google Scholar 

  123. Naumann, R. W., Hughes, B. N., Brown, J., Drury, L. K. & Herzog, T. J. The impact of opportunistic salpingectomy on ovarian cancer mortality and healthcare costs: a call for universal insurance coverage. Am. J. Obstet. Gynecol. 225, 397.e391–397.e6 (2021).

    Article  Google Scholar 

  124. Idahl, A., Darelius, A., Sundfeldt, K., Palsson, M. & Strandell, A. Hysterectomy and opportunistic salpingectomy (HOPPSA): study protocol for a register-based randomized controlled trial. Trials 20, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Steenbeek, M. P. et al. TUBectomy with delayed oophorectomy as an alternative to risk-reducing salpingo-oophorectomy in high-risk women to assess the safety of prevention: the TUBA-WISP II study protocol. Int. J. Gynecol. Cancer 33, 982–987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huh, W. et al. NRG-CC008: a nonrandomized prospective clinical trial comparing the non-inferiority of salpingectomy to salpingo-oophorectomy to reduce the risk of ovarian cancer among BRCA1 carriers [SOROCk]. J. Clin. Oncol. 60, https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS106 (2022).

  127. Evans, O., Gaba, F. & Manchanda, R. Population-based genetic testing for women’s cancer prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 65, 139–153 (2020).

    Article  PubMed  Google Scholar 

  128. Alsop, K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 30, 2654–2663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Konstantinopoulos, P. A. et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J. Clin. Oncol. 38, 1222–1245 (2020).

    Article  PubMed  Google Scholar 

  130. Samimi, G. et al. Traceback: a proposed framework to increase identification and genetic counseling of BRCA1 and BRCA2 mutation carriers through family-based outreach. J. Clin. Oncol. 35, 2329–2337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brown, K. F. et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br. J. Cancer 118, 1130–1141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jordan, S. J. et al. Cancers in Australia in 2010 attributable to total breastfeeding durations of 12 months or less by parous women. Aust. N. Z. J. Public Health 39, 418–421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. ClinicalTrials.gov. US National Library of Medicine https://clinicaltrials.gov/study/NCT03480776 (2023).

  134. Appiah, D., Nwabuo, C. C., Ebong, I. A., Wellons, M. F. & Winters, S. J. Trends in age at natural menopause and reproductive life span among US women, 1959-2018. J. Am. Med. Assoc. 325, 1328–1330 (2021).

    Article  Google Scholar 

  135. Cheng, H. et al. Global trends in total fertility rate and its relation to national wealth, life expectancy and female education. BMC Public Health 22, 1346 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Boutari, C. & Mantzoros, C. S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133, 155217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kurman, R., Carcangiu, M., Herrington, C. & Young, R. WHO Classification of Tumours. Female Reproductive Organs (IARC, 2014).

  138. Surveillance Epidemiology and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence — SEER Research Plus Data with Delay-Adjustment, 17 Registries, Malignant Only, Nov 2022 Sub (2000-2020) — Linked To County Attributes — Total U.S., 1969-2021 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2023, based on the November 2022 submission (accessed 2023).

  139. Australian Institute of Health and Welfare (AIHW). Cancer Data in Australia https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia/ (2023).

  140. Larønningen, S. et al. NORDCAN: Cancer Incidence, Mortality, Prevalence and Survival in the Nordic Countries, Version 9.3 (02.10.2023). Association of the Nordic Cancer Registries. Cancer Registry of Norway. Available from: https://nordcan.iarc.fr/, (accessed 22 October 2023).

  141. Rosenberg, P. S., Check, D. P. & Anderson, W. F. A web tool for age-period-cohort analysis of cancer incidence and mortality rates. Cancer Epidemiol. Biomark. Prev. 23, 2296–2302 (2014).

    Article  Google Scholar 

  142. The US National Cancer Institute. Site Recode ICD-O-3 2023 Revision Expanded Definition https://seer.cancer.gov/siterecode/icdo3_2023_expanded/ (2024).

  143. WHO Classification of Tumours Editorial Board. World Health Organization Classification of Female Genital Tumours. 5th Edition (IARC Press, 2020).

  144. McCluggage, W. G., Hirschowitz, L., Gilks, C. B., Wilkinson, N. & Singh, N. The fallopian tube origin and primary site assignment in extrauterine high-grade serous carcinoma: findings of a survey of pathologists and clinicians. Int. J. Gynecol. Pathol. 36, 230–239 (2017).

    Article  PubMed  Google Scholar 

  145. McCluggage, W. G. Progress in the pathological arena of gynecological cancers. Int. J. Gynaecol. Obstet. 155, 107–114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cancer Research UK. Ovarian Cancer Incidence Statistics https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/incidence#collapseTwo (2024).

  147. National Cancer Institute (NCI). Cancer Stat Facts: Ovarian Cancer. https://seer.cancer.gov/statfacts/html/ovary.html (accessed 31 January 2024).

  148. Global Burden of Disease Cancer Collaboration et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 8, 420–444 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Penelope M. Webb.

Ethics declarations

Competing interests

P.M.W. has received speaker’s fees and research funding from AstraZeneca. S.J.J. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, P.M., Jordan, S.J. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 21, 389–400 (2024). https://doi.org/10.1038/s41571-024-00881-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00881-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing