Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-wide identification of transcript start and end sites by transcript isoform sequencing

Abstract

Hundreds of transcript isoforms with varying boundaries and alternative regulatory signals are transcribed from the genome, even in a genetically homogeneous population of cells. To study this transcriptional heterogeneity, we developed transcript isoform sequencing (TIF-seq), a method that allows the genome-wide profiling of full-length transcript isoforms defined by their exact 5′ and 3′ boundaries. TIF-seq entails the generation of full-length cDNA libraries, followed by their circularization and the sequencing of the junction fragments spanning the 5′ and 3′ transcript ends. By determining the respective co-occurrence of start and end sites of individual transcript molecules, TIF-seq can distinguish variations that conventional approaches for mapping single ends cannot, such as short abortive transcripts, bicistronic messages and overlapping transcripts that differ in lengths. The TIF-seq protocol we describe here can be applied to any eukaryotic organism (e.g., yeast, human), and it requires 6–10 d for generating TIF-seq libraries, 10 d for sequencing and 2–3 d for analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detailed experimental workflow of TIF-seq.
Figure 2: TIF-seq quality controls and anticipated results.
Figure 3: Gel size-selection of long full-length cDNA.

Similar content being viewed by others

References

  1. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  Google Scholar 

  2. Di Giammartino, D.C., Nishida, K. & Manley, J.L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  Google Scholar 

  3. Gupta, I. et al. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol. Syst. Biol. 10, 719 (2014).

    Article  Google Scholar 

  4. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    Article  CAS  Google Scholar 

  5. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  6. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    Article  CAS  Google Scholar 

  7. Wei, W., Pelechano, V., Jarvelin, A.I. & Steinmetz, L.M. Functional consequences of bidirectional promoters. Trends Genet. 27, 267–276 (2011).

    Article  CAS  Google Scholar 

  8. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

    Article  CAS  Google Scholar 

  9. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    Article  CAS  Google Scholar 

  10. Zhang, Z. & Dietrich, F.S. Mapping of transcription start sites in Saccharomyces cerevisiae using 5′ SAGE. Nucleic Acids Res. 33, 2838–2851 (2005).

    Article  CAS  Google Scholar 

  11. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    Article  CAS  Google Scholar 

  12. Moqtaderi, Z., Geisberg, J.V., Jin, Y., Fan, X. & Struhl, K. Species-specific factors mediate extensive heterogeneity of mRNA 3′ ends in yeasts. Proc. Natl. Acad. Sci. USA 110, 11073–11078 (2013).

    Article  CAS  Google Scholar 

  13. Wilkening, S. et al. An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res. 41, e65 (2012).

    Article  Google Scholar 

  14. Pelechano, V., Wilkening, S., Jarvelin, A.I., Tekkedil, M.M. & Steinmetz, L.M. Genome-wide polyadenylation site mapping. Methods in Enzymology 513, 271–296 (2012).

    Article  CAS  Google Scholar 

  15. Pelechano, V., Wei, W. & Steinmetz, L.M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    Article  CAS  Google Scholar 

  16. Ng, P. et al. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34, e84 (2006).

    Article  Google Scholar 

  17. Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2, 105–111 (2005).

    Article  CAS  Google Scholar 

  18. Fullwood, M.J. et al. An oestrogen receptor-α–bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  Google Scholar 

  19. Ruan, X. & Ruan, Y. Genome wide full-length transcript analysis using 5′ and 3′ paired-end-tag next generation sequencing (RNA-PET). Methods Mol. Biol. 809, 535–562 (2012).

    Article  CAS  Google Scholar 

  20. Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37, 327–336 (1996).

    Article  CAS  Google Scholar 

  21. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. BioTechniques 30, 892–897 (2001).

    Article  CAS  Google Scholar 

  22. Maruyama, K. & Sugano, S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171–174 (1994).

    Article  CAS  Google Scholar 

  23. Scotto-Lavino, E., Du, G. & Frohman, M.A. Amplification of 5′ end cDNA with 'new RACE'. Nat. Protoc. 1, 3056–3061 (2006).

    Article  CAS  Google Scholar 

  24. Carninci, P. Constructing the landscape of the mammalian transcriptome. J. Exp. Biol. 210, 1497–1506 (2007).

    Article  CAS  Google Scholar 

  25. Kuai, L., Fang, F., Butler, J.S. & Sherman, F. Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 8581–8586 (2004).

    Article  CAS  Google Scholar 

  26. Van Nieuwerburgh, F. et al. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS ONE 6, e26969 (2011).

    Article  CAS  Google Scholar 

  27. Chen, Y. et al. Systematic evaluation of factors influencing ChIP-seq fidelity. Nat. Methods 9, 609–614 (2012).

    Article  CAS  Google Scholar 

  28. Miura, F. et al. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc. Natl. Acad. Sci. USA 103, 17846–17851 (2006).

    Article  CAS  Google Scholar 

  29. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    Article  CAS  Google Scholar 

  30. McManus, C.J., Duff, M.O., Eipper-Mains, J. & Graveley, B.R. Global analysis of trans-splicing in Drosophila. Proc. Natl. Acad. Sci. USA 107, 12975–12979 (2010).

    Article  CAS  Google Scholar 

  31. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  32. Wilkening, S. et al. Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics 14, 90 (2013).

    Article  CAS  Google Scholar 

  33. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Aiyar for help in editing and refining the manuscript; A.I. Järvelin, J. Zaugg and S. Clauder-Münster for help in optimizing the TIF-seq protocol; and the members of the Steinmetz laboratory for helpful discussions and critical comments. This study was technically supported by the EMBL Genomics Core Facility. This study was financially supported by the US National Institutes of Health and the EMBL (to L.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.W., V.P. and L.M.S. conceived the project; V.P. developed the TIF-seq method; P.J. contributed to further method optimization; W.W. and V.P. performed data analysis; and L.M.S. supervised the study. All authors wrote the manuscript.

Corresponding author

Correspondence to Lars M Steinmetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelechano, V., Wei, W., Jakob, P. et al. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat Protoc 9, 1740–1759 (2014). https://doi.org/10.1038/nprot.2014.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.121

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing