Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle

Abstract

This protocol describes a method for nucleocytoplasmic protein tracking during normal cell cycle progression using unmanipulated, asynchronous cells. In contrast with prevalent traditional methods, our approach does not require time-consuming, perturbing cell synchronization or separation. To this end, we chose a single-cell approach and developed a flow cytometry assay that is applied to whole cells and isolated nuclei. Our protocol involves a stepwise biochemical fractionation procedure to purify nuclei from whole cells, conventional DNA and indirect immunostaining techniques for the dual labeling of cells and nuclei for DNA and protein, and a refined concept of flow cytometric data processing and calculation: through the specific combination of DNA and cell size analyses, G1, S and G2/M phases of the cell cycle are further dissected to establish a high-resolution map of cell cycle progression, to which protein expression in cells or nuclei is correlated. In a final data analysis step, cell cycle–related, cytoplasmic protein expression is calculated on the basis of results obtained for whole cells and isolated nuclei. A minimum of 8 h is required to complete the procedure. As the approach does not require cell type–restricting pretreatments, numerous cell types of different origin can be readily studied. Human amniotic fluid stem cells, primary human fibroblasts, immortalized mouse fibroblasts and transformed tumor cells are analyzed at comparable efficiencies, demonstrating low intercell assay variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of nuclei for use in traditional and improved cell cycle studies.
Figure 2: Nucleocytoplasmic protein tracking throughout the cell cycle via traditional immunoblotting.
Figure 3: Refined approach of flow cytometric data analysis.
Figure 4: Flow cytometric characterization of isolated nuclei.
Figure 5: Monitoring protein expression during the cell cycle via flow cytometry.
Figure 6: Monitoring nucleocytoplasmic protein expression via flow cytometry.
Figure 7: Nucleocytoplasmic protein tracking throughout the cell cycle via improved flow cytometry.

Similar content being viewed by others

References

  1. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy, L.O. & Blenis, J. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Zaidi, S.K. et al. Nuclear microenvironments in biological control and cancer. Nat. Rev. Cancer 7, 454–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Rajendran, L., Knölker, H.J. & Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9, 29–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Rosner, M., Schipany, K. & Hengstschläger, M. Spatial consequences of blocking mTOR/S6K: relevance for therapy. Cell Cycle 11, 420–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Keyomarsi, K. & Pardee, A.B. Selective protection of normal proliferating cells against the toxic effects of chemotherapeutic agents. Prog. Cell Cycle Res. 5, 527–532 (2003).

    PubMed  Google Scholar 

  7. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosner, M. & Hengstschläger, M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum. Mol. Genet. 17, 2934–2948 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Roblek, M. et al. Monoclonal antibodies specific for disease-associated point-mutants: lamin A/C R453W and R482W. PLoS ONE 5, e10604 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rosner, M. & Hengstschläger, M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene 30, 4509–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Rosner, M. & Hengstschläger, M. mTOR protein localization is cell cycle-regulated. Cell Cycle 15, 3608–3610 (2011).

    Article  CAS  Google Scholar 

  12. Roederer, M. Multiparameter FACS analysis. Curr. Protoc. Immunol. 49, 5.8.1–5.8.10 (2002).

    Google Scholar 

  13. Krutzik, P.O., Crane, J.M., Clutter, M.R. & Nolan, G.P. High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol. 4, 132–142 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. Krutzik, P.O., Trejo, A., Schulz, K.R. & Nolan, G.P. Phospho flow cytometry methods for the analysis of kinase signaling in cell lines and primary human blood samples. Methods Mol. Biol. 699, 179–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Darzynkiewicz, Z., Juan, G. & Traganos, F. Cytometry of cell cycle regulatory proteins. Prog. Cell Cycle Res. 5, 533–542 (2003).

    PubMed  Google Scholar 

  16. Rosner, M., Schipany, K. & Hengstschläger, M. Phosphorylation of nuclear and cytoplasmic pools of ribosomal protein S6 during cell cycle progression. Amino Acids doi:10.1007/s00726-012-1445-1 (20 December 2012).

  17. Conlon, I.J., Dunn, G.A., Mudge, A.W. & Raff, M.C. Extracellular control of cell size. Nat. Cell Biol. 3, 918–921 (2003).

    Article  CAS  Google Scholar 

  18. Mitchison, J.M. Growth during the cell cycle. Int. Rev. Cytol. 226, 165–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Huber, M.D. & Gerace, L. The size-wise nucleus: nuclear volume control in eukaryotes. J. Cell Biol. 179, 583–584 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maeshima, K., Iino, H., Hihara, S. & Imamoto, N. Nuclear size, nuclear pore number and cell cycle. Nucleus 2, 113–118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pardee, A.B. & Keyomarsi, K. Modification of cell proliferation with inhibitors. Curr. Opin. Cell Biol. 4, 186–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, P.K., Ho, A. & Dowdy, S.F. Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 30, 1322–1326 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jackmann, J. & O'Connor, P.M. Methods for synchronizing cells at specific stages of the cell cycle. Curr. Protoc. Cell Biol. 8.3, 8.3.1–8.3.20 (2001).

    Google Scholar 

  24. Harper, J.V. Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol. Biol. 296, 157–166 (2005).

    CAS  PubMed  Google Scholar 

  25. Banfalvi, G. Overview of cell synchronization. Methods Mol. Biol. 761, 1–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kung, A.L., Zetterberg, A., Sherwood, S.W. & Schimke, R.T. Cytotoxic effects of cell cycle phase specific agents: result of cell cycle perturbation. Cancer Res. 50, 7307–7317 (1990).

    CAS  PubMed  Google Scholar 

  27. Urbani, L., Sherwood, S.W. & Schimke, R.T. Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp. Cell Res. 219, 159–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Gong, J., Traganos, F. & Darzynkiewicz, Z. Growth imbalance and altered expression of cyclins B1, A, E, and D3 in MOLT-4 cells synchronized in the cell cycle by inhibitors of DNA replication. Cell Growth Differ. 6, 1485–1493 (1995).

    CAS  PubMed  Google Scholar 

  29. Darzynkiewicz, Z., Halicka, H.D., Zhao, H. & Podhorecka, M. Cell synchronization by inhibitors of DNA replication induces replication stress and DNA damage response: analysis by flow cytometry. Methods Mol. Biol. 761, 85–96 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miloloza, A. et al. The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum. Mol. Genet. 9, 1721–1727 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Soucek, T., Pusch, O., Wienecke, R., DeClue, J.E. & Hengstschläger, M. Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J. Biol. Chem. 272, 29301–29308 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Astrinidis, A., Senapedis, W., Coleman, T.R. & Henske, E.P. Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem. 278, 51372–51379 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rosner, M. et al. Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat. Protoc. 5, 1081–1095 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Rosner, M. & Hengstschläger, M. Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids 33, 575–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Rosner, M., Freilinger, A. & Hengstschläger, M. Akt regulates nuclear/cytoplasmic localization of tuberin. Oncogene 26, 521–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Shelby, R.D., Monier, K. & Sullivan, K.F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soucek, T., Yeung, R. & Hengstschläger, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl. Acad. Sci. USA 95, 15653–15658 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosner, M. & Hengstschläger, M. Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J. Biol. Chem. 279, 48707–48715 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, W., Giangrande, P.H. & Nevins, J.R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keyomarsi, K., Sandoval, L., Band, V. & Pardee, A.B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602–3609 (1991).

    CAS  PubMed  Google Scholar 

  42. Hengst, L., Dulic, V., Slingerland, J.M., Lees, E. & Reed, S.I. A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 5291–5295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, S. et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc. Natl. Acad. Sci. USA 96, 7797–7802 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Javanmoghadam-Kamrani, S. & Keyomarsi, K. Synchronization of the cell cycle using lovastatin. Cell Cycle 7, 2434–2440 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lalande, M. A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp. Cell Res. 186, 332–339 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Kalejta, R.F. & Hamlin, J.L. The dual effect of mimosine on DNA replication. Exp. Cell Res. 231, 173–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Marraccino, R.L., Firpo, E.J. & Roberts, J.M. Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. Mol. Biol. Cell 3, 389–401 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, S.Y. et al. Mimosine arrests the cell cycle prior to the onset of DNA replication by preventing the binding of human Ctf4/And-1 to chromatin via Hif-1α activation in HeLa cells. Cell Cycle 11, 761–766 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bootsma, D., Budke, L. & Vos, O. Studies on synchronous division of tissue culture cells initiated by excess thymidine. Exp. Cell Res. 33, 301–309 (1964).

    Article  CAS  PubMed  Google Scholar 

  50. Thomas, D.B. & Lingwood, C.A. A model of cell cycle control: effects of thymidine on synchronous cell cultures. Cell 5, 37–42 (1975).

    Article  CAS  PubMed  Google Scholar 

  51. Mittnacht, S. & Weinberg, R.A. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65, 381–393 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ikegami, S. et al. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275, 458–460 (1978).

    Article  CAS  PubMed  Google Scholar 

  54. Pedrali-Noy, G. et al. Synchronization of HeLa cell cultures by inhibition of DNA polymerase αwith aphidicolin. Nucleic Acids Res. 8, 377–387 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dulić, V., Stein, G.H., Far, D.F. & Reed, S.I. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell Biol. 18, 546–557 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Adams, R.L. & Lindsay, J.G. Hydroxyurea reversal of inhibition and use as a cell-synchronizing agent. J. Biol. Chem. 242, 1314–1317 (1967).

    Article  CAS  PubMed  Google Scholar 

  57. Maurer-Schultze, B., Siebert, M. & Bassukas, I.D. An in vivo study on the synchronizing effect of hydroxyurea. Exp. Cell Res. 174, 230–243 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell Biol. 21, 4684–4699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor, E.W. The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of h3-colchicine. J. Cell Biol. 25, 145–160 (1965).

    Article  CAS  PubMed Central  Google Scholar 

  60. Romsdahl, M.M. Synchronization of human cell lines with colcemid. Exp. Cell Res. 50, 463–467 (1968).

    Article  CAS  PubMed  Google Scholar 

  61. Sherwood, S.W., Rush, D.F., Kung, A.L. & Schimke, R.T. Cyclin B1 expression in HeLa S3 cells studied by flow cytometry. Exp. Cell Res. 211, 275–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Hayashi, M.T., Cesare, A.J., Fitzpatrick, J.A., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 387–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deysson, G. Antimitotic substances. Int. Rev. Cytol. 24, 99–148 (1968).

    Article  CAS  PubMed  Google Scholar 

  64. Zieve, G.W., Turnbull, D., Mullins, J.M. & McIntosh, J.R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell Res. 126, 397–405 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. Jansen-Dürr, P. et al. Differential modulation of cyclin gene expression by MYC. Proc. Natl. Acad. Sci. USA 90, 3685–3689 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y. & Yamaguchi, N. Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression. Eur. J. Cell Biol. 91, 413–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Griffin, M.J. Synchronization of some human cell strains by serum and calcium starvation. In Vitro 12, 393–398 (1976).

    Article  CAS  PubMed  Google Scholar 

  68. Campisi, J., Morreo, G. & Pardee, A.B. Kinetics of G1 transit following brief starvation for serum factors. Exp. Cell Res. 152, 459–466 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Pardee, A.B. G1 events and regulation of cell proliferation. Science 246, 603–608 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Langan, T.J. & Chou, R.C. Synchronization of mammalian cell cultures by serum deprivation. Methods Mol. Biol. 761, 75–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Tobey, R.A. & Crissman, H.A. Preparation of large quantities of synchronized mammalian cells in late G1 in the pre-DNA replicative phase of the cell cycle. Exp. Cell Res. 75, 460–464 (1972).

    Article  CAS  PubMed  Google Scholar 

  73. Ley, K.D. & Murphy, M.M. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine. J. Cell Biol. 58, 340–345 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cifuentes, E., Croxen, R., Menon, M., Barrack, E.R. & Reddy, G.P. Synchronized prostate cancer cells for studying androgen-regulated events in cell cycle progression from G1 into S phase. J. Cell Physiol. 195, 337–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Holley, R.W. & Kiernan, J.A. 'Contact inhibition' of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60, 300–304 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Nelson, P.J. & Daniel, T.O. Emerging targets: molecular mechanisms of cell contact-mediated growth control. Kidney Int. 61, S99–S105 (2002).

    Article  PubMed  Google Scholar 

  78. Haberichter, T. et al. A systems biology dynamical model of mammalian G1 cell cycle progression. Mol. Syst. Biol. 3, 84 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Elvin, P. & Evans, C.W. Cell adhesiveness and the cell cycle: correlation in synchronized BALB/c 3T3 cells. Biol. Cell 48, 1–9 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Morla, A.O., Draetta, G., Beach, D. & Wang, J.Y. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58, 193–203 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Schorl, C. & Sedivy, J.M. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods 41, 143–150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beyrouthy, M.J. et al. Identification of G1-regulated genes in normally cycling human cells. PLoS ONE 3, e3943 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lindahl, P.E. Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161, 648 (1948).

    Article  CAS  PubMed  Google Scholar 

  84. Kauffman, M.G., Noga, S.J., Kelly, T.J. & Donnenberg, A.D. Isolation of cell cycle fractions by counterflow centrifugal elutriation. Anal. Biochem. 191, 41–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Dulić, V., Lees, E. & Reed, S.I. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958–1961 (1992).

    Article  PubMed  Google Scholar 

  86. Zickert, P., Wejde, J., Skog, S., Zetterberg, A . & Larsson, O. Growth-regulatory properties of G1 cells synchronized by centrifugal elutriation. Exp. Cell Res. 207, 115–121 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Hengstschläger, M., Pusch, O., Soucek, T., Hengstschläger-Ottnad, E. & Bernaschek, G. Quality control of centrifugal elutriation for studies of cell cycle regulations. Biotechniques 23, 232–234, 236–237 (1997).

    Article  PubMed  Google Scholar 

  88. Banfalvi, G. Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat. Protoc. 3, 663–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Arndt-Jovin, D.J. & Jovin, T.M. Analysis and sorting of living cells according to deoxyribonucleic acid content. J. Histochem. Cytochem. 25, 585–589 (1977).

    Article  CAS  PubMed  Google Scholar 

  90. Widrow, R.J. & Laird, C.D. Enrichment for submitotic cell populations using flow cytometry. Cytometry 39, 126–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Juan, G., Hernando, E. & Cordon-Cardo, C. Separation of live cells in different phases of the cell cycle for gene expression analysis. Cytometry 49, 170–175 (2002).

    Article  PubMed  Google Scholar 

  92. Coquelle, A. et al. Enrichment of non-synchronized cells in the G1, S and G2 phases of the cell cycle for the study of apoptosis. Biochem. Pharmacol. 72, 1396–1404 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Shapiro, H.M. Practical Flow Cytometry. John Wiley & Sons, 2003.

  94. Darzynkiewicz, Z. et al. Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Freilinger, A. et al. Tuberin activates the proapoptotic molecule BAD. Oncogene 25, 6467–6479 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, H., Stallock, J.P., Ng, J.C., Reinhard, C. & Neufeld, T.P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fingar, D.C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rosner, M., Hofer, K., Kubista, M. & Hengstschläger, M. Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38. Oncogene 22, 4786–4798 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Murakami, M. et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell Biol. 24, 6710–6718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ruvinsky, I. et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 19, 2199–1211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rosner, M., Fuchs, C., Siegel, N., Valli, A. & Hengstchläger, M. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum. Mol. Genet. 18, 3298–3310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ekim, B. et al. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol. Cell Biol. 31, 2787–2801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The clonal human amniotic fluid stem cell line Q1 was kindly provided by A. Atala (Wake Forest University School of Medicine). CDKN1B (p27), TSC2 (tuberin) and TOP2B (topoisomerase IIβ) wild-type and knockout cells were obtained from J.M. Roberts (Fred Hutchinson Cancer Research Center), D.J. Kwiatkowski (Brigham and Women's Hospital) and N. Adachi (Yokohama City University), respectively. We thank all members of our laboratory for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Contributions

M.R. and K.S. designed and performed experiments, analyzed data and wrote the article. M.H. conceived the method, designed experiments, analyzed data and wrote the article.

Corresponding author

Correspondence to Markus Hengstschläger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Optimized fixation conditions for the combined analysis of DNA and protein on the flow cytometer. (PDF 554 kb)

Supplementary Figure 2

Evaluation of FSC (forward scatter) analyses to study cell cycle-associated changes in cell size. (PDF 460 kb)

Supplementary Figure 3

Approach and quality control of FSC (forward scatter) dissection. (PDF 788 kb)

Supplementary Figure 4

Example of a complete FSC(G1)/DNA(S)/FSC(G2/M) dissection. (PDF 421 kb)

Supplementary Figure 5

Evaluation of antibody specificity. (PDF 716 kb)

Supplementary Figure 6

Evaluation of antibody sensitivity and the comparative analysis of flow cytometry and immunoblotting with regard to the quantifiability of obtained results. (PDF 717 kb)

Supplementary Figure 7

Flow cytometric Oct-4 analyses in Q1 human amniotic fluid stem (hAFS) cells and human teratocarcinoma cells. (PDF 305 kb)

Supplementary Figure 8

Cell cycle regulation of histone H3 and α-tubulin in Q1 human amniotic fluid stem cells. (PDF 369 kb)

Supplementary Figure 9

Expression and cell cycle regulation of α-tubulin in TSC2+/+versus TSC2−/−MEFs. (PDF 298 kb)

Supplementary Figure 10

Ratios of nuclear to whole cell MFIs (FL1-H median fluorescence intensities) for cytofluorometrically analyzed nuclear, cytoplasmic and nucleocytoplasmic proteins. (PDF 270 kb)

Supplementary Figure 11

Depiction of fold changes in the cell cycle regulation of cytoplasmic versus nuclear importin α1 and mTOR. (PDF 283 kb)

Supplementary Figure 12

Cell cycle regulation of αtubulin in BxPC-3 pancreas carcinoma cells. (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosner, M., Schipany, K. & Hengstschläger, M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 8, 602–626 (2013). https://doi.org/10.1038/nprot.2013.011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing