Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Oxime-based linker libraries as a general approach for the rapid generation and screening of multidentate inhibitors

Abstract

The described oxime-based library protocol provides detailed procedures for the linkage of aminooxy functionality with aldehyde building blocks that result in the generation of libraries of multidentate inhibitors. Synthesis of inhibitors for protein tyrosine phosphatases (PTPs) and antagonists directed against the human tumor susceptibility gene 101 (TSG101) are shown as examples. Three steps are involved: (i) the design and synthesis of aminooxy platforms; (ii) tethering with aldehydes to form oxime-based linkages with sufficient purity; and (iii) direct in vitro biological evaluation of oxime products without purification. Each coupling reaction is (i) performed in capped microtubes at room temperature (20–23 °C); (ii) diluted for inhibitory evaluation; and (iii) screened with targets in microplates to provide IC50 or Kd values. The synthesis of the aminooxy platforms takes 3–5 d; tethering with the aldehydes takes 24 h; and inhibition assay of enzymes and protein-protein interactions takes 30 min and 2 h, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxime-based tethering.
Figure 2: Design of YopH inhibitors.
Figure 3
Figure 4: Structure of peptide oxime 9.
Figure 5: Synthesis of aminooxy-containing 1.
Figure 6: Synthesis of aminooxy-protected proline 18.
Figure 7: Synthesis of 8d.
Figure 8
Figure 9
Figure 10: Analytical data for inhibitors 3 and 9.

Similar content being viewed by others

References

  1. Zhang, Z.Y. et al. Substrate specificity of the protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 90, 4446–4450 (1993).

    Article  CAS  Google Scholar 

  2. Zhang, Z.Y., Maclean, D., McNamara, D.J., Sawyer, T.K. & Dixon, J.E. Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33, 2285–2290 (1994).

    Article  CAS  Google Scholar 

  3. Jia, Z., Barford, D., Flint, A.J. & Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758 (1995).

    Article  CAS  Google Scholar 

  4. Wu, L., Buist, A., den Hertog, J. & Zhang, Z.Y. Comparative kinetic analysis and substrate specificity of the tandem catalytic domains of the receptor-like protein-tyrosine phosphatase alpha. J. Biol. Chem. 272, 6994–7002 (1997).

    Article  CAS  Google Scholar 

  5. Sarmiento, M., Zhao, Y., Gordon, S.J. & Zhang, Z.Y. Molecular basis for substrate specificity of protein-tyrosine phosphatase 1B. J. Biol. Chem. 273, 26368–26374 (1998).

    Article  CAS  Google Scholar 

  6. Sarmiento, M. et al. Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry 39, 8171–8179 (2000).

    Article  CAS  Google Scholar 

  7. Atwell, S., Ultsch, M., De Vos, A.M. & Wells, J.A. Structural plasticity in a remodeled protein-protein interface. Science 278, 1125–1128 (1997).

    Article  CAS  Google Scholar 

  8. Arkin, M.R. et al. Binding of small molecules to an adaptive protein-protein interface. Proc. Natl. Acad. Sci. USA 100, 1603–1608 (2003).

    Article  CAS  Google Scholar 

  9. Meireles, L.M. & Mustata, G. Discovery of modulators of protein-protein interactions: current approaches and limitations. Curr. Top. Med. Chem. 11, 248–257 (2011).

    Article  CAS  Google Scholar 

  10. Tron, G.C. et al. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28, 278–308 (2008).

    Article  CAS  Google Scholar 

  11. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  12. Huisgen, R., Grashey, R. & Sauer, J. Chemistry of Alkenes 806–877 (Interscience, 1964).

  13. Fazio, F., Bryan, M.C., Blixt, O., Paulson, J.C. & Wong, C.H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124, 14397–14402 (2002).

    Article  CAS  Google Scholar 

  14. Srinivasan, R., Uttamchandani, M. & Yao, S.Q. Rapid assembly and in situ screening of bidentate inhibitors of protein tyrosine phosphatases. Org. Lett. 8, 713–716 (2006).

    Article  CAS  Google Scholar 

  15. Wang, J., Uttamchandani, M., Li, J., Hu, M. & Yao, S.Q. Rapid assembly of matrix metalloprotease inhibitors using click chemistry. Org. Lett. 8, 3821–3824 (2006).

    Article  CAS  Google Scholar 

  16. Srinivasan, R., Li, J., Ng, S.L., Kalesh, K.A. & Yao, S.Q. Methods of using click chemistry in the discovery of enzyme inhibitors. Nat. Protoc. 2, 2655–2664 (2007).

    Article  CAS  Google Scholar 

  17. Huang, Z. et al. Derivatives of salicylic acid as inhibitors of YopH in Yersinia pestis. Chem. Biol. Drug. Des. 76, 85–99 (2010).

    Article  CAS  Google Scholar 

  18. Zhang, X. et al. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J. Med. Chem. 53, 2482–2493 (2010).

    Article  CAS  Google Scholar 

  19. Zhou, B. et al. Targeting Mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA 107, 4573–4578 (2010).

    Article  CAS  Google Scholar 

  20. Lee, L.V. et al. A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc. 125, 9588–9589 (2003).

    Article  CAS  Google Scholar 

  21. Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).

    Article  CAS  Google Scholar 

  22. Pagliai, F. et al. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J. Med. Chem. 49, 467–470 (2006).

    Article  CAS  Google Scholar 

  23. Whiting, M. et al. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl. 45, 1435–1439 (2006).

    Article  CAS  Google Scholar 

  24. He, R. et al. Double click reaction for the acquisition of a highly potent and selective mPTPB inhibitor. ChemMedChem 5, 2051–2056 (2010).

    Article  CAS  Google Scholar 

  25. Tornoe, C.W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  Google Scholar 

  26. Wu, P. et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. Engl. 43, 3928–3932 (2004).

    Article  CAS  Google Scholar 

  27. Malkoch, M. et al. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. J. Am. Chem. Soc. 127, 14942–14949 (2005).

    Article  CAS  Google Scholar 

  28. Aucagne, V. & Leigh, D.A. Chemoselective formation of successive triazole linkages in one pot: 'click-click' chemistry. Org. Lett. 8, 4505–4507 (2006).

    Article  CAS  Google Scholar 

  29. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  30. Dorner, S. & Westermann, B. A short route for the synthesis of 'sweet' macrocycles via a click-dimerization-ring-closing metathesis approach. Chem. Commun. (Camb) 2852–2854 (2005).

  31. Kalia, J. & Raines, R.T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. Engl. 47, 7523–7526 (2008).

    Article  CAS  Google Scholar 

  32. Liu, F. et al. A rapid oxime linker-based library approach to identification of bivalent inhibitors of the Yersinia pestis protein-tyrosine phosphatase, YopH. Bioorg. Med. Chem. Lett. 20, 2813–2816 (2010).

    Article  CAS  Google Scholar 

  33. Bahta, M. & Burke, T.R. Jr. Oxime-based click chemistry in the development of 3-isoxazolecarboxylic acid containing inhibitors of Yersinia pestis protein tyrosine phosphatase, YopH. ChemMedChem 6, 1363–1370 (2011).

    Article  CAS  Google Scholar 

  34. Bahta, M. et al. Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase (double dagger). J. Med. Chem. 54, 2933–2943 (2011).

    Article  CAS  Google Scholar 

  35. Liu, F., Stephen, A.G., Fisher, R.J. & Burke, T.R. Jr. Protected aminooxyprolines for expedited library synthesis: application to Tsg101-directed proline-oxime containing peptides. Bioorg. Med. Chem. Lett. 18, 1096–1101 (2008).

    Article  CAS  Google Scholar 

  36. Liu, F. et al. SAR by oxime-containing peptide libraries: application to Tsg101 ligand optimization. Chembiochem 9, 2000–2004 (2008).

    Article  CAS  Google Scholar 

  37. Kim, S.E. et al. Elucidation of new binding interactions with the human Tsg101 protein using modified HIV-1 Gag-p6 derived peptide ligands. ACS Med. Chem. Lett. 2, 337–341 (2011).

    Article  CAS  Google Scholar 

  38. Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006).

    Article  CAS  Google Scholar 

  39. Blaskovich, M.A. Drug discovery and protein tyrosine phosphatases. Curr. Med. Chem. 16, 2095–2176 (2009).

    Article  CAS  Google Scholar 

  40. Soulsby, M. & Bennett, A.M. Physiological signaling specificity by protein tyrosine phosphatases. Physiology (Bethesda) 24, 281–289 (2009).

    CAS  Google Scholar 

  41. Zhang, Z.Y. et al. The Cys(X)5Arg catalytic motif in phosphoester hydrolysis. Biochemistry 33, 15266–15270 (1994).

    Article  CAS  Google Scholar 

  42. Zhang, Z.Y., Wang, Y. & Dixon, J.E. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 91, 1624–1627 (1994).

    Article  CAS  Google Scholar 

  43. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  Google Scholar 

  44. Bieniasz, P.D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006).

    Article  CAS  Google Scholar 

  45. Demirov, D.G., Ono, A., Orenstein, J.M. & Freed, E.O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  Google Scholar 

  46. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    Article  CAS  Google Scholar 

  47. Freed, E.O. The HIV-TSG101 interface: recent advances in a budding field. Trends Microbiol. 11, 56–59 (2003).

    Article  CAS  Google Scholar 

  48. Chen, H., Liu, X., Li, Z., Zhan, P. & De Clercq, E. TSG101: a novel anti-HIV-1 drug target. Curr. Med. Chem. 17, 750–758 (2010).

    Article  CAS  Google Scholar 

  49. Pornillos, O., Alam, S.L., Davis, D.R. & Sundquist, W.I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat. Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  50. Merrifield, R.B. Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  51. Albericio, F. Solid-Phase Synthesis: A Practical Guide 1st ed. (CRC Press, 2000).

  52. Phan, J. et al. High-resolution structure of the Yersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide. Biochemistry 42, 13113–13121 (2003).

    Article  CAS  Google Scholar 

  53. Liu, F. et al. Hydrazone- and hydrazide-containing N-substituted glycines as peptoid surrogates for expedited library synthesis: application to the preparation of Tsg101-directed HIV-1 budding antagonists. Org. Lett. 8, 5165–5168 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Intramural Research Program and under the Contract No. HHSN261200800001E of the US National Institutes of Health, Center for Cancer Research, National Cancer Institute–Frederick and the National Cancer Institute, National Institutes of Health. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

M.B., F.L., S.-E.K. and A.G.S. carried out the experimental procedures; M.B., F.L., S.-E.K., A.G.S., R.J.F. and T.R.B. planned the work, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Terrence R Burke Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahta, M., Liu, F., Kim, SE. et al. Oxime-based linker libraries as a general approach for the rapid generation and screening of multidentate inhibitors. Nat Protoc 7, 686–702 (2012). https://doi.org/10.1038/nprot.2012.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.007

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research