Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A murine model of urinary tract infection

Abstract

Urinary tract infections (UTIs) inflict extreme pain and discomfort to those affected and have profound medical and socioeconomic impact. Although acute UTIs are often treatable with antibiotics, a large proportion of patients suffer from multiple recurrent infections. Here, we describe and provide a protocol for a robust murine UTI model that allows for the study of uropathogens in an ideal setting. The infections in the urinary tract can be monitored quantitatively by determining the bacterial loads at different times post-infection. In addition, the simple bladder architecture allows observation of disease progression and the uropathogenic virulence cascade using a variety of microscopic techniques. This mouse UTI model is extremely flexible, allowing the study of different bacterial strains and species of uropathogens in a broad range of mouse genetic backgrounds. We have used this protocol to identify important aspects of the host-pathogen interaction that determine the outcome of infection. The time required to complete the entire procedure will depend on the number of bacterial strains and mice included in the study. Nevertheless, one should expect 4 h of hands-on time, including inoculum preparation on the day of infection, transurethral inoculation, tissue harvest and post-harvest processing for a small group of mice (e.g., 5 mice).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mouse urothelium.
Figure 2: Schematic of the pap and fim operons.
Figure 3: Uropathogenic Escherichia coli (UPEC) pathogenic cycle.
Figure 4: The intracellular bacterial community (IBC).
Figure 5: Typical make-up of a mobile induction system.
Figure 6: Urinary catheter.
Figure 7: Catheterization process.
Figure 8: Mouse urinary-tract anatomy.
Figure 9: Stretched bladder on silicone pad.
Figure 10: Sample tissue bacterial titers.
Figure 11: Confocal fluorescence microscopy images of intracellular bacterial communities (IBCs) and filamentous bacteria.
Figure 12: Histological images of infected bladder.

Similar content being viewed by others

References

  1. Hooton, T.M. & Stamm, W.E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am. 11, 551–581 (1997).

    Article  CAS  Google Scholar 

  2. Svanborg, C. & Godaly, G. Bacterial virulence in urinary tract infection. Infect. Dis. Clin. North Am. 11, 513–529 (1997).

    Article  CAS  Google Scholar 

  3. Wu, X.R. et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J Biol Chem 269, 13716–13724 (1994).

    CAS  PubMed  Google Scholar 

  4. Connell, H. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93, 9827–9832 (1996).

    Article  CAS  Google Scholar 

  5. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997).

    Article  CAS  Google Scholar 

  6. Mulvey, M.A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli . Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  7. Thankavel, K. et al. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest. 100, 1123–1126 (1997).

    Article  CAS  Google Scholar 

  8. Kisielius, P.V., Schwan, W.R., Amundsen, S.K., Duncan, J.L. & Schaeffer, A.J. In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infect. Immun. 57, 1656–1662 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli . J. Infect. Dis. 181, 774–778 (2000).

    Article  CAS  Google Scholar 

  10. Nuccio, S.P. & Baumler, A.J. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol. Mol. Biol. Rev. 71, 551–575 (2007).

    Article  CAS  Google Scholar 

  11. Thanassi, D.G. & Hultgren, S.J. Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. Methods 20, 111–126 (2000).

    Article  CAS  Google Scholar 

  12. Abraham, S.N., Sun, D., Dale, J.B. & Beachey, E.H. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336, 682–684 (1988).

    Article  CAS  Google Scholar 

  13. Krogfelt, K.A., Bergmans, H. & Klemm, P. Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect. Immun. 58, 1995–1998 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez, J.J. & Hultgren, S.J. Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli . Cell Microbiol. 4, 19–28 (2002).

    Article  CAS  Google Scholar 

  15. Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S. & Hultgren, S.J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  Google Scholar 

  16. Zhou, G. et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell Sci. 114 (Pt 22): 4095–4103 (2001).

    CAS  PubMed  Google Scholar 

  17. Justice, S.S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  Google Scholar 

  18. Justice, S.S., Hunstad, D.A., Seed, P.C. & Hultgren, S.J. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl. Acad. Sci. USA 103, 19884–19889 (2006).

    Article  CAS  Google Scholar 

  19. Hopkins, W.J., Gendron-Fitzpatrick, A., Balish, E. & Uehling, D.T. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect. Immun. 66, 2798–2802 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaeffer, A.J., Schwan, W.R., Hultgren, S.J. & Duncan, J.L. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect. Immun. 55, 373–380 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bishop, B.L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    Article  CAS  Google Scholar 

  22. Gunther, N.W.t., Lockatell, V., Johnson, D.E. & Mobley, H.L. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69, 2838–2846 (2001).

    Article  CAS  Google Scholar 

  23. Hagberg, L. et al. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritic E. coli of human origin. Infect. Immun. 40, 273–280 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hvidberg, H. et al. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob. Agents Chemother. 44, 156–163 (2000).

    Article  CAS  Google Scholar 

  25. Lane, M.C., Alteri, C.J., Smith, S.N. & Mobley, H.L. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl. Acad. Sci. USA 104, 16669–16674 (2007).

    Article  CAS  Google Scholar 

  26. Malaviya, R., Ikeda, T., Abraham, S.N. & Malaviya, R. Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli . Immunol. Lett. 91, 103–111 (2004).

    Article  CAS  Google Scholar 

  27. Hopkins, W.J., Hall, J.A., Conway, B.P. & Uehling, D.T. Induction of urinary tract infection by intraurethral inoculation with Escherichia coli: refining the murine model. J. Infect. Dis. 171, 462–465 (1995).

    Article  CAS  Google Scholar 

  28. Rouschop, K.M. et al. Urothelial CD44 facilitates Escherichia coli infection of the murine urinary tract. J. Immunol. 177, 7225–7232 (2006).

    Article  CAS  Google Scholar 

  29. Anderson, G.G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  Google Scholar 

  30. Mysorekar, I.U. & Hultgren, S.J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl. Acad. Sci. USA 103, 14170–14175 (2006).

    Article  CAS  Google Scholar 

  31. Wright, K.J., Seed, P.C. & Hultgren, S.J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230–2241 (2007).

    Article  CAS  Google Scholar 

  32. Justice, S.S., Lauer, S.R., Hultgren, S.J. & Hunstad, D.A. Maturation of intracellular Escherichia coli communities requires SurA. Infect. Immun. 74, 4793–4800 (2006).

    Article  CAS  Google Scholar 

  33. Johnson, J.R. Reflux in the mouse model of urinary tract infection. Infect. Immun. 66, 6063–6064 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson, J.R. & Brown, J.J. Defining inoculation conditions for the mouse model of ascending urinary tract infection that avoid immediate vesicoureteral reflux yet produce renal and bladder infection. J. Infect. Dis. 173, 746–749 (1996).

    Article  CAS  Google Scholar 

  35. Rosen, D.A., Hung, C.S., Kline, K.A. & Hultgren, S.J. Streptozocin-induced diabetic mouse model of urinary tract infection. Infect. Immun. 76, 4290–4298 (2008).

    Article  CAS  Google Scholar 

  36. Garofalo, C.K. et al. Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation. Infect. Immun. 75, 52–60 (2007).

    Article  CAS  Google Scholar 

  37. Mulvey, M.A., Schilling, J.D. & Hultgren, S.J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  Google Scholar 

  38. Schilling, J.D., Martin, S.M., Hung, C.S., Lorenz, R.G. & Hultgren, S.J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli . Proc. Natl. Acad. Sci. USA 100, 4203–4208 (2003).

    Article  CAS  Google Scholar 

  39. Rosen, D.A., Hooton, T.M., Stamm, W.E., Humphrey, P.A. & Hultgren, S.J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    Article  Google Scholar 

  40. Kau, A.L., Hunstad, D.A. & Hultgren, S.J. Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr. Opin. Microbiol. 8, 54–59 (2005).

    Article  CAS  Google Scholar 

  41. Rosen, D.A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    Article  CAS  Google Scholar 

  42. Rosen, D.A. et al. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect. Immun. 76, 3337–3345 (2008).

    Article  CAS  Google Scholar 

  43. Institute of Laboratory Animal Resources, Commission on Life Sciences, National research Council. Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, DC, USA, 1996).

  44. Wellens, A. et al. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS ONE 3, e2040 (2008).

    Article  Google Scholar 

  45. Kulesus, R.R., Diaz-Perez, K., Slechta, E.S., Eto, D.S. & Mulvey, M.A. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli . Infect. Immun. 76, 3019–3026 (2008).

    Article  CAS  Google Scholar 

  46. Hannan, T.J. et al. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol. Microbiol. 67, 116–128 (2008).

    CAS  PubMed  Google Scholar 

  47. Wright, K.J., Seed, P.C. & Hultgren, S.J. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect. Immun. 73, 7657–7668 (2005).

    Article  CAS  Google Scholar 

  48. Mysorekar, I.U., Mulvey, M.A., Hultgren, S.J. & Gordon, J.I. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli . J. Biol. Chem. 277, 7412–7419 (2002).

    Article  CAS  Google Scholar 

  49. Schilling, J.D., Lorenz, R.G. & Hultgren, S.J. Effect of trimethoprim–sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli . Infect. Immun. 70, 7042–7049 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all current and former Hultgren lab members in optimizing and perfecting the murine UTI model. We thank Dr. Wandy Beatty in the Molecular Microbiology Imaging Facility at Washington University School of Medicine for her excellent technical assistance with fluorescence microscopy. C.-S.H., K.W.D. and S.J.H. are supported by National Institutes of Health Office of Research on Women's Health: Specialized Center of Research on Sex and Gender Factors Affecting Women's Health, grant R01 DK64540, National Institute of Diabetes and Digestive and Kidney Diseases, grants R01 DK051406 and National Institute of Allergy and Infectious Diseases, grants R01 AI29549, R01 AI48689 and R01 AI50011.

Author information

Authors and Affiliations

Authors

Contributions

C.-S.H., K.W.D. and S.J.H. wrote the manuscript. C.-S.H. generated the sample data presented in Anticipated Results.

Corresponding author

Correspondence to Scott J Hultgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CS., Dodson, K. & Hultgren, S. A murine model of urinary tract infection. Nat Protoc 4, 1230–1243 (2009). https://doi.org/10.1038/nprot.2009.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.116

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing