Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uropathogen and host responses in pyelonephritis

Abstract

Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.

Key points

  • Uropathogenic Escherichia coli (UPEC) is the most common bacterial cause of pyelonephritis; virulence factors expressed by UPEC promote survival in the kidney by expediating cellular invasion and neutralizing host defences.

  • Within the collecting duct, intercalated cells are targeted by UPEC; intercalated cells respond by activating acid–base machinery, phagocytosing bacteria, producing cytokines and chemokines and releasing antimicrobial peptides.

  • An intricate network of macrophages and dendritic cells, in close proximity to collecting tubules, survey the renal interstitium and respond to UPEC by producing neutrophil and monocyte chemoattractants to combat bacteria during pyelonephritis.

  • Extracellular environmental factors and endogenous hormones influence or control important antibacterial defences in the kidney.

  • The increasing prevalence of antibiotic-resistant uropathogens highlights an urgent need for new therapeutic approaches that conserve antibiotic use and mitigate the morbidity associated with pyelonephritis; better understanding of host–pathogen interactions in the kidney may aid these efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antibiotic targets and antibiotic resistance strategies deployed by uropathogenic Escherichia coli.
Fig. 2: Antibacterial responses of the kidney collecting duct to uropathogenic Escherichia coli.
Fig. 3: Emerging and potential antibiotic-conserving therapeutics for pyelonephritis.

Similar content being viewed by others

References

  1. Becknell, B., Schwaderer, A., Hains, D. S. & Spencer, J. D. Amplifying renal immunity: the role of antimicrobial peptides in pyelonephritis. Nat. Rev. Nephrol. 11, 642–655 (2015).

    CAS  PubMed  Google Scholar 

  2. Butler, D. et al. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat. Rev. Urol. 19, 419–437 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulvey, M. A., Schilling, J. D., Martinez, J. J. & Hultgren, S. J. Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc. Natl Acad. Sci. USA 97, 8829–8835 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambite, I. et al. Molecular determinants of disease severity in urinary tract infection. Nat. Rev. Urol. 18, 468–486 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020).

    PubMed  Google Scholar 

  6. Morello, W., La Scola, C., Alberici, I. & Montini, G. Acute pyelonephritis in children. Pediatr. Nephrol. 31, 1253–1265 (2016).

    PubMed  Google Scholar 

  7. Keren, R. et al. Risk factors for recurrent urinary tract infection and renal scarring. Pediatrics 136, e13–e21 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Hoberman, A. et al. Antimicrobial prophylaxis for children with vesicoureteral reflux. N. Engl. J. Med. 370, 2367–2376 (2014).

    PubMed  Google Scholar 

  9. Johnson, J. R. & Russo, T. A. Acute pyelonephritis in adults. N. Engl. J. Med. 378, 48–59 (2018).

    PubMed  Google Scholar 

  10. Geerlings, S. E. Urinary tract infections in patients with diabetes mellitus: epidemiology, pathogenesis and treatment. Int. J. Antimicrob. Agents 31, S54–S57 (2008).

    CAS  PubMed  Google Scholar 

  11. Habak, P. J. & Griggs, J. R. P. Urinary Tract Infection in Pregnancy. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK537047/ (2023).

  12. Wu, S. Y. et al. Long-term surveillance and management of urological complications in chronic spinal cord-injured patients. J. Clin. Med. https://doi.org/10.3390/jcm11247307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morris, B. J. & Wiswell, T. E. Circumcision and lifetime risk of urinary tract infection: a systematic review and meta-analysis. J. Urol. 189, 2118–2124 (2013).

    PubMed  Google Scholar 

  14. Nordenstam, G. R., Brandberg, C. A., Oden, A. S., Svanborg Eden, C. M. & Svanborg, A. Bacteriuria and mortality in an elderly population. N. Engl. J. Med. 314, 1152–1156 (1986).

    CAS  PubMed  Google Scholar 

  15. Hatfield, K. M. et al. Assessing variability in hospital-level mortality among U.S. Medicare beneficiaries with hospitalizations for severe sepsis and septic shock. Crit. Care Med. 46, 1753–1760 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Gharbi, M. et al. Antibiotic management of urinary tract infection in elderly patients in primary care and its association with bloodstream infections and all cause mortality: population based cohort study. Br. Med. J. 364, l525 (2019).

    Google Scholar 

  17. Wang, T. Z., Kodiyanplakkal, R. P. L. & Calfee, D. P. Antimicrobial resistance in nephrology. Nat. Rev. Nephrol. 15, 463–481 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Zowawi, H. M. et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 12, 570–584 (2015).

    CAS  PubMed  Google Scholar 

  19. Desvaux, M. et al. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 11, 2065 (2020).

    PubMed  PubMed Central  Google Scholar 

  20. Mobley, H. L., Donnenberg, M. S. & Hagan, E. C. Uropathogenic Escherichia coli. EcoSal https://doi.org/10.1128/ecosalplus.8.6.1.3 (2009).

    Article  Google Scholar 

  21. Terlizzi, M. E., Gribaudo, G. & Maffei, M. E. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Wiles, T. J., Kulesus, R. R. & Mulvey, M. A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85, 11–19 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nielubowicz, G. R. & Mobley, H. L. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7, 430–441 (2010). This review comprehensively outlines the UPEC virulence factors needed to establish pyelonephritis.

    CAS  PubMed  Google Scholar 

  24. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    CAS  PubMed  Google Scholar 

  26. Li, B. et al. Inflammation drives renal scarring in experimental pyelonephritis. Am. J. Physiol. Renal Physiol. 312, F43–F53 (2017).

    CAS  PubMed  Google Scholar 

  27. Deguchi, T. et al. Electron microscopic study of acute retrograde pyelonephritis in mice. Urology 35, 423–427 (1990).

    CAS  PubMed  Google Scholar 

  28. Sanford, J. P., Hunter, B. W. & Donaldson, P. Localization and fate of Escherichia coli in hematogenous pyelonephritis. J. Exp. Med. 116, 285–294 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy, A., Al-bataineh, M. M. & Pastor-Soler, N. M. Collecting duct intercalated cell function and regulation. Clin. J. Am. Soc. Nephrol. 10, 305–324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kriz, W., Kaissling, B., Alpern, R., Caplan, M. & Moe, O. Seldin and Giebisch’s the kidney: physiology and pathophysiology. 5th edn. (eds Alpern, R. J., Moe, O.W. & Caplan M.) (Elsevier, 2013).

  31. Saxena, V. et al. Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. Nat. Commun. 12, 2405 (2021). This study uses intravital microscopy and single kidney tubule perfusion to show that murine intercalated cells phagocytose UPEC to prevent pyelonephritis.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chassin, C. et al. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J. Immunol. 177, 4773–4784 (2006). This landmark study identifies TLR4-dependent and -independent epithelial mechanisms that are activated in the kidney when challenged with UPEC.

    CAS  PubMed  Google Scholar 

  33. Paragas, N. et al. α-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Invest. 124, 2963–2976 (2014). This study shows that intercalated cell deletion increases pyelonephritis susceptibility.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McLellan, L. K. et al. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 17, e1009314 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    CAS  PubMed  Google Scholar 

  36. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881 e868 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Korhonen, T. K., Virkola, R. & Holthofer, H. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect. Immun. 54, 328–332 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roberts, J. A. et al. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl Acad. Sci. USA 91, 11889–11893 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, K., Zhou, W., Hong, Y., Sacks, S. H. & Sheerin, N. S. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells. BMC Microbiol. 9, 64 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Springall, T. et al. Epithelial secretion of C3 promotes colonization of the upper urinary tract by Escherichia coli. Nat. Med. 7, 801–806 (2001).

    CAS  PubMed  Google Scholar 

  41. Chassin, C. et al. TLR4 facilitates translocation of bacteria across renal collecting duct cells. J. Am. Soc. Nephrol. 19, 2364–2374 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, C. et al. Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury. Mucosal Immunol. 13, 22–33 (2020).

    CAS  PubMed  Google Scholar 

  43. Wu, J. H., Billings, B. J. & Balkovetz, D. F. Hepatocyte growth factor alters renal epithelial cell susceptibility to uropathogenic Escherichia coli. J. Am. Soc. Nephrol. 12, 2543–2553 (2001).

    CAS  PubMed  Google Scholar 

  44. Trifillis, A. L. et al. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int. 46, 1083–1091 (1994).

    CAS  PubMed  Google Scholar 

  45. Tsuboi, N. et al. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J. Immunol. 169, 2026–2033 (2002).

    CAS  PubMed  Google Scholar 

  46. Uhlen, P. et al. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405, 694–697 (2000).

    CAS  PubMed  Google Scholar 

  47. Chakrabarti, G. & McClane, B. A. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol. 7, 129–146 (2005).

    CAS  PubMed  Google Scholar 

  48. Melican, K. et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol. 10, 1987–1998 (2008).

    CAS  PubMed  Google Scholar 

  49. Kuper, C., Beck, F. X. & Neuhofer, W. Toll-like receptor 4 activates NF-κB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am. J. Physiol. Renal Physiol. 302, F38–F46 (2012).

    PubMed  Google Scholar 

  50. Saxena, V., Arregui, S., Kamocka, M. M., Hains, D. S. & Schwaderer, A. MAP3K7 is an innate immune regulatory gene with increased expression in human and murine kidney intercalated cells following uropathogenic Escherichia coli exposure. J. Cell Biochem. 123, 1817–1826 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hagberg, L. et al. Difference in susceptibility to Gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Patole, P. S. et al. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int. 68, 2582–2587 (2005).

    CAS  PubMed  Google Scholar 

  53. Puthia, M. et al. IRF7 inhibition prevents destructive innate immunity — a target for nonantibiotic therapy of bacterial infections. Sci. Transl. Med. 8, 336ra359 (2016). This study shows the fine balance of the type I interferon response during pyelonephritis and the damaging effects of IRF-7 hyperactivation.

    Google Scholar 

  54. Fischer, H. et al. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog. 6, e1001109 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Chowdhury, P., Sacks, S. H. & Sheerin, N. S. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin. Exp. Immunol. 145, 346–356 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bens, M. et al. Flagellin/TLR5 signalling activates renal collecting duct cells and facilitates invasion and cellular translocation of uropathogenic Escherichia coli. Cell Microbiol. 16, 1503–1517 (2014).

    CAS  PubMed  Google Scholar 

  57. Andersen-Nissen, E. et al. Cutting edge: Tlr5−/− mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178, 4717–4720 (2007).

    CAS  PubMed  Google Scholar 

  58. Hawn, T. R. et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4, e5990 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    CAS  PubMed  Google Scholar 

  60. Tourneur, E. et al. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)-mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog. 9, e1003152 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, C. et al. NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection. Autophagy 10, 331–338 (2014).

    CAS  PubMed  Google Scholar 

  62. Saxena, V. et al. Cell specific qRT-PCR of renal epithelial cells reveals a novel innate immune signature in murine collecting duct. Am. J. Physiol. Renal Physiol. 315, F812–F823 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Saxena, V. et al. Whole transcriptome analysis of renal intercalated cells predicts lipopolysaccharide mediated inhibition of retinoid X receptor α function. Sci. Rep. 9, 545 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Zasloff, M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J. Am. Soc. Nephrol. 18, 2810–2816 (2007).

    CAS  PubMed  Google Scholar 

  65. Canas, J. J. et al. Human neutrophil peptides 1–3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc. Natl Acad. Sci. USA 119, e2206515119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    CAS  PubMed  Google Scholar 

  67. Becknell, B. et al. Expression and antimicrobial function of β-defensin 1 in the lower urinary tract. PLoS One 8, e77714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Steigedal, M. et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J. Immunol. 193, 6081–6089 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Houamel, D. et al. Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J. Am. Soc. Nephrol. 27, 835–846 (2016).

    CAS  PubMed  Google Scholar 

  70. Spencer, J. D. et al. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 83, 615–625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Spencer, J. D. et al. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 80, 174–180 (2011).

    CAS  PubMed  Google Scholar 

  72. Hains, D. S. et al. Deleted in malignant brain tumor 1 genetic variation confers urinary tract infection risk in children and mice. Clin. Transl. Med. 11, e477 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Eichler, T. et al. Ribonuclease 7 shields the kidney and bladder from invasive uropathogenic Escherichia coli infection. J. Am. Soc. Nephrol. 30, 1385–1397 (2019). This original work uses in vitro human models and a humanized transgenic mouse to show that the antimicrobial peptide RNase 7 has a role in UTI prevention.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Becknell, B. et al. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int. 87, 151–161 (2015).

    CAS  PubMed  Google Scholar 

  75. Jaillon, S. et al. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 40, 621–632 (2014).

    CAS  PubMed  Google Scholar 

  76. Bender, K. et al. Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am. J. Physiol. Renal Physiol. 320, F972–F983 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bates, J. M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004).

    CAS  PubMed  Google Scholar 

  78. Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).

    CAS  PubMed  Google Scholar 

  79. Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369, 1005–1010 (2020).

    CAS  PubMed  Google Scholar 

  80. Forster, C. S. et al. Urinary NGAL deficiency in recurrent urinary tract infections. Pediatr. Nephrol. 32, 1077–1080 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Eichler, T. E. et al. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate ribonuclease 7 expression in the human urinary tract. Kidney Int. 90, 568–579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Garimella, P. S. et al. Urinary uromodulin and risk of urinary tract infections: the Cardiovascular Health Study. Am. J. Kidney Dis. 69, 744–751 (2017).

    CAS  PubMed  Google Scholar 

  83. Schwaderer, A. L. et al. Polymorphisms in alpha-defensin-encoding DEFA1A3 associate with urinary tract infection risk in children with vesicoureteral reflux. J. Am. Soc. Nephrol. 27, 3175–3186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pierce, K. R. et al. Ribonuclease 7 polymorphism rs1263872 reduces antimicrobial activity and associates with pediatric urinary tract infections. J. Clin. Investig. https://doi.org/10.1172/JCI149807 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Murtha, M. J. et al. Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J. Clin. Invest. 128, 5634–5646 (2018). This study shows that deletion of insulin receptor in the collecting duct or intercalated cells increases UTI susceptibility by suppressing antimicrobial peptide expression.

    PubMed  PubMed Central  Google Scholar 

  86. Watts, B. A. 3rd, George, T. & Good, D. W. Lumen LPS inhibits HCO3 absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange. Am. J. Physiol. Renal Physiol. 305, F451–F462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsuruoka, S., Purkerson, J. M. & Schwartz, G. J. Lipopolysaccharide directly inhibits bicarbonate absorption by the renal outer medullary collecting duct. Sci. Rep. 10, 20548 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hains, D. S. et al. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am. J. Physiol. Renal Physiol. 307, F869–F880 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Purkerson, J. M., Corley, J. L. & Schwartz, G. J. Metabolic acidosis exacerbates pyelonephritis in mice prone to vesicoureteral reflux. Physiol. Rep. 8, e14525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Peng, H., Purkerson, J. M., Freeman, R. S., Schwaderer, A. L. & Schwartz, G. J. Acidosis induces antimicrobial peptide expression and resistance to uropathogenic E. coli infection in kidney collecting duct cells via HIF-1α. Am. J. Physiol. Renal Physiol. 318, F468–F474 (2020).

    CAS  PubMed  Google Scholar 

  91. Peng, H., Purkerson, J. M., Schwaderer, A. L. & Schwartz, G. J. Metabolic acidosis stimulates the production of the antimicrobial peptide cathelicidin in rabbit urine. Am. J. Physiol. Renal Physiol. 313, F1061–F1067 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Ketz, J. et al. Developmental loss, but not pharmacological suppression, of renal carbonic anhydrase 2 results in pyelonephritis susceptibility. Am. J. Physiol. Renal Physiol. 318, F1441–F1453 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hayes, B. W. & Abraham, S. N. Innate immune responses to bladder infection. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0024-2016 (2016).

    Article  PubMed  Google Scholar 

  94. Soos, T. J. et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 70, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  95. Weisheit, C. K., Engel, D. R. & Kurts, C. Dendritic cells and macrophages: sentinels in the kidney. Clin. J. Am. Soc. Nephrol. 10, 1841–1851 (2015). This review summarizes the classification of dendritic cells and macrophages in the kidney and their roles in pyelonephritis, acute kidney disease, chronic kidney disease and renal transplantation.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sedin, J. et al. High resolution intravital imaging of the renal immune response to injury and infection in mice. Front. Immunol. 10, 2744 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tittel, A. P. et al. Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J. Am. Soc. Nephrol. 22, 1435–1441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schiwon, M. et al. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156, 456–468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mora-Bau, G. et al. Macrophages subvert adaptive immunity to urinary tract infection. PLoS Pathog. 11, e1005044 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Berry, M. R. et al. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170, 860–874 e819 (2017). This work demonstrates that the renal sodium stimulates NFAT5-mediated epithelial CCL2 production, which recruits mononuclear phagocytes to renal medulla and forms a medullary defence zone against uropathogens.

    CAS  PubMed  Google Scholar 

  101. Ruiz-Rosado, J. D. et al. Neutrophil-macrophage imbalance drives the development of renal scarring during experimental pyelonephritis. J. Am. Soc. Nephrol. 32, 69–85 (2021). The data demonstrate that a balance between antimicrobial and inflammatory responses orchestrated by neutrophils and monocyte-derived macrophages, respectively, is required to effectively control acute pyelonephritis and prevent deteriorating kidney function.

    PubMed  Google Scholar 

  102. Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Investig. 117, 902–909 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, H. I., Skvarca, L. B., Espiritu, E. B., Davidson, A. J. & Hukriede, N. A. The role of macrophages during acute kidney injury: destruction and repair. Pediatr. Nephrol. 34, 561–569 (2019).

    PubMed  Google Scholar 

  104. Wen, Y., Yan, H. R., Wang, B. & Liu, B. C. Macrophage heterogeneity in kidney injury and fibrosis. Front. Immunol. 12, 681748 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Haraoka, M. et al. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 180, 1220–1229 (1999).

    CAS  PubMed  Google Scholar 

  106. Svensson, M. et al. Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice. Kidney Int. 80, 1064–1072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Godaly, G., Proudfoot, A. E., Offord, R. E., Svanborg, C. & Agace, W. W. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect. Immun. 65, 3451–3456 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Javor, J. et al. Genetic variations of interleukin-8, CXCR1 and CXCR2 genes and risk of acute pyelonephritis in children. Int. J. Immunogenet. 39, 338–345 (2012).

    CAS  PubMed  Google Scholar 

  109. Artifoni, L. et al. Interleukin-8 and CXCR1 receptor functional polymorphisms and susceptibility to acute pyelonephritis. J. Urol. 177, 1102–1106 (2007).

    CAS  PubMed  Google Scholar 

  110. Han, S. S., Lu, Y., Chen, M., Xu, Y. Q. & Wang, Y. Association between interleukin 8-receptor gene (CXCR1 and CXCR2) polymorphisms and urinary tract infection: evidence from 4097 subjects. Nephrology 24, 464–471 (2019).

    CAS  PubMed  Google Scholar 

  111. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med. 14, 399–406 (2008). This study identifies TcpC as a UPEC-derived virulence factor that blunts TLR signalling and NF-κB activation in macrophages.

    CAS  PubMed  Google Scholar 

  112. Waldhuber, A. et al. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation. J. Clin. Investig. 126, 2425–2436 (2016). This study demonstrates that the TcpC protein blocks activation of the NLRP3 inflammasome, which serves a key role in intracellular recognition of UPEC.

    PubMed  PubMed Central  Google Scholar 

  113. Fang, J. Q. et al. TcpC inhibits Toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. PLoS Pathog. 17, e1009481 (2021). This study demonstrates that TcpC serves as an E3 ubiquitin ligase to direct the proteosomal degradation of MyD88.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ou, Q. et al. TcpC inhibits neutrophil extracellular trap formation by enhancing ubiquitination mediated degradation of peptidylarginine deiminase 4. Nat. Commun. 12, 3481 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bhakdi, S. et al. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J. Exp. Med. 169, 737–754 (1989).

    CAS  PubMed  Google Scholar 

  116. Dhakal, B. K. & Mulvey, M. A. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11, 58–69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Verma, V. et al. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci. Rep. 10, 12653 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Blomgran, R., Zheng, L. & Stendahl, O. Uropathogenic Escherichia coli triggers oxygen-dependent apoptosis in human neutrophils through the cooperative effect of type 1 fimbriae and lipopolysaccharide. Infect. Immun. 72, 4570–4578 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tewari, R. et al. The PapG tip adhesin of P fimbriae protects Escherichia coli from neutrophil bactericidal activity. Infect. Immun. 62, 5296–5304 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Horvath, D. J. Jr. et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 13, 426–437 (2011).

    CAS  PubMed  Google Scholar 

  121. Justice, S. S., Hunstad, D. A., Seed, P. C. & Hultgren, S. J. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl Acad. Sci. USA 103, 19884–19889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019). This elegant study provides evidence of the spatial arrangement of immune cells in the human kidney and how it changes over developmental time and anatomical space. The results from this study suggest that antimicrobial immunity is spatially zonated but this feature is only evident postnatally.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jobin, K. et al. A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay3850 (2020). This original work demonstrates that experimental pyelonephritis is aggravated in mice on a high salt diet.

    Article  PubMed  Google Scholar 

  124. Chassin, C. et al. Hormonal control of the renal immune response and antibacterial host defense by arginine vasopressin. J. Exp. Med. 204, 2837–2852 (2007). This study shows that arginine vasopressin modulates antibacterial defences in the kidney.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hale, L. J. & Coward, R. J. Insulin signalling to the kidney in health and disease. Clin. Sci. 124, 351–370 (2013).

    CAS  Google Scholar 

  126. Froy, O., Hananel, A., Chapnik, N. & Madar, Z. Differential effect of insulin treatment on decreased levels of β-defensins and Toll-like receptors in diabetic rats. Mol. Immunol. 44, 796–802 (2007).

    CAS  PubMed  Google Scholar 

  127. Hiratsuka, T. et al. Structural analysis of human β-defensin-1 and its significance in urinary tract infection. Nephron 85, 34–40 (2000).

    CAS  PubMed  Google Scholar 

  128. Brauner, H. et al. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 177, 478–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mohanty, S. et al. Diabetes downregulates the antimicrobial peptide psoriasin and increases E. coli burden in the urinary bladder. Nat. Commun. 13, 4983 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Albracht, C. D., Hreha, T. N. & Hunstad, D. A. Sex effects in pyelonephritis. Pediatr. Nephrol. 36, 507–515 (2021).

    PubMed  Google Scholar 

  131. Ingersoll, M. A. Sex differences shape the response to infectious diseases. PLoS Pathog. 13, e1006688 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Zychlinsky Scharff, A. et al. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight https://doi.org/10.1172/jci.insight.122998 (2019).

    Article  PubMed  Google Scholar 

  133. Olson, P. D., Hruska, K. A. & Hunstad, D. A. Androgens enhance male urinary tract infection severity in a new model. J. Am. Soc. Nephrol. 27, 1625–1634 (2016).

    CAS  PubMed  Google Scholar 

  134. Hreha, T. N. et al. Androgen-influenced polarization of activin A-producing macrophages accompanies post-pyelonephritic renal scarring. Front. Immunol. 11, 1641 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Olson, P. D. et al. Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int. 94, 502–513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hreha, T. N. et al. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol. Rep. 8, e14401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sen, A., Iyer, J., Boddu, S., Kaul, A. & Kaul, R. Estrogen receptor α differentially modulates host immunity in the bladder and kidney in response to urinary tract infection. Am. J. Clin. Exp. Urol. 7, 110–122 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Luthje, P. et al. Estrogen supports urothelial defense mechanisms. Sci. Transl. Med. 5, 190ra180 (2013).

    Google Scholar 

  139. Wang, C., Symington, J. W., Ma, E., Cao, B. & Mysorekar, I. U. Estrogenic modulation of uropathogenic Escherichia coli infection pathogenesis in a murine menopause model. Infect. Immun. 81, 733–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mobley, H. L. & Alteri, C. J. Development of a vaccine against Escherichia coli urinary tract infections. Pathogens https://doi.org/10.3390/pathogens5010001 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lorenzo-Gomez, M. F. et al. Comparison of sublingual therapeutic vaccine with antibiotics for the prophylaxis of recurrent urinary tract infections. Front. Cell Infect. Microbiol. 5, 50 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Prattley, S., Geraghty, R., Moore, M. & Somani, B. K. Role of vaccines for recurrent urinary tract infections: a systematic review. Eur. Urol. Focus. 6, 593–604 (2020).

    PubMed  Google Scholar 

  143. Alteri, C. J., Hagan, E. C., Sivick, K. E., Smith, S. N. & Mobley, H. L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 5, e1000586 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Forsyth, V. S. et al. Optimization of an experimental vaccine to prevent Escherichia coli urinary tract infection. mBio https://doi.org/10.1128/mBio.00555-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Spurbeck, R. R. et al. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect. Immun. 80, 4115–4122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189, 3532–3546 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    CAS  PubMed  Google Scholar 

  148. Kranjcec, B., Papes, D. & Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J. Urol. 32, 79–84 (2014).

    CAS  PubMed  Google Scholar 

  149. De Nunzio, C., Bartoletti, R., Tubaro, A., Simonato, A. & Ficarra, V. Role of D-Mannose in the prevention of recurrent uncomplicated cystitis: state of the art and future perspectives. Antibiotics https://doi.org/10.3390/antibiotics10040373 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Franssen, M. et al. D-Mannose to prevent recurrent urinary tract infections (MERIT): protocol for a randomised controlled trial. BMJ Open 11, e037128 (2021).

    PubMed  PubMed Central  Google Scholar 

  151. Greene, S. E. et al. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. mBio 5, e02038 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Piatek, R. et al. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 13, 131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Loubet, P. et al. Alternative therapeutic options to antibiotics for the treatment of urinary tract infections. Front. Microbiol. 11, 1509 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).

    PubMed  Google Scholar 

  155. Pouwels, K. B., Visser, S. T., Bos, H. J. & Hak, E. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infections: a prescription sequence symmetry analysis. Drug Saf. 36, 1079–1086 (2013).

    CAS  PubMed  Google Scholar 

  156. Hall, S. A. et al. Commonly used antihypertensives and lower urinary tract symptoms: results from the Boston area community health (BACH) survey. BJU Int. 109, 1676–1684 (2012).

    PubMed  Google Scholar 

  157. Blanco-Colio, L. M., Tunon, J., Martin-Ventura, J. L. & Egido, J. Anti-inflammatory and immunomodulatory effects of statins. Kidney Int. 63, 12–23 (2003).

    CAS  PubMed  Google Scholar 

  158. Leitner, L. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Ujmajuridze, A. et al. Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 9, 1832 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. Zulk, J. J. et al. Phage resistance accompanies reduced fitness of uropathogenic Escherichia coli in the urinary environment. mSphere 7, e0034522 (2022).

    PubMed  Google Scholar 

  161. Gu, Y. et al. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl. Microbiol. Biotechnol. 103, 315–326 (2019).

    CAS  PubMed  Google Scholar 

  162. Pires, D. P., Melo, L., Vilas Boas, D., Sillankorva, S. & Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 39, 48–56 (2017).

    CAS  PubMed  Google Scholar 

  163. Hoover, J. L., Singley, C. M., Elefante, P. & Rittenhouse, S. Efficacy of human exposures of gepotidacin (GSK2140944) against Escherichia coli in a rat pyelonephritis model. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00086-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Scangarella-Oman, N. E. et al. Dose selection for phase III clinical evaluation of gepotidacin (GSK2140944) in the treatment of uncomplicated urinary tract infections. Antimicrob. Agents Chemother. 66, e0149221 (2022).

    PubMed  Google Scholar 

  165. Perry, C. et al. Design of two phase III, randomized, multicenter studies comparing gepotidacin with nitrofurantoin for the treatment of uncomplicated urinary tract infection in female participants. Infect. Dis. Ther. 11, 2297–2310 (2022).

    PubMed  PubMed Central  Google Scholar 

  166. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Schwartz, L. et al. Repurposing HDAC inhibitors to enhance ribonuclease 4 and 7 expression and reduce urinary tract infection. Proc. Natl Acad. Sci. USA 120, e2213363120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nagamatsu, K. et al. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc. Natl Acad. Sci. USA 112, E871–E880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Skals, M., Jorgensen, N. R., Leipziger, J. & Praetorius, H. A. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc. Natl Acad. Sci. USA 106, 4030–4035 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Garcia, T. A., Ventura, C. L., Smith, M. A., Merrell, D. S. & O’Brien, A. D. Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect. Immun. 81, 99–109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mills, M., Meysick, K. C. & O’Brien, A. D. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect. Immun. 68, 5869–5880 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Guyer, D. M., Radulovic, S., Jones, F. E. & Mobley, H. L. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect. Immun. 70, 4539–4546 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. He, Y. et al. TcpC secreting uropathogenic E. coli promoted kidney cells to secrete MIP-2 via p38 MAPK pathway. Mol. Med. Rep. 16, 3528–3534 (2017).

    CAS  PubMed  Google Scholar 

  174. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA. 93, 9630–9635 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mulvey, M. A. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 4, 257–271 (2002).

    CAS  PubMed  Google Scholar 

  176. Backhed, F. et al. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J. Biol. Chem. 277, 18198–18205 (2002).

    CAS  PubMed  Google Scholar 

  177. Nowicki, B., Hart, A., Coyne, K. E., Lublin, D. M. & Nowicki, S. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J. Exp. Med. 178, 2115–2121 (1993).

    CAS  PubMed  Google Scholar 

  178. Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun. 69, 6179–6185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Anderson, G. G., Goller, C. C., Justice, S., Hultgren, S. J. & Seed, P. C. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect. Immun. 78, 963–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Goh, K. G. K. et al. Genome-wide discovery of genes required for capsule production by uropathogenic Escherichia coli. mBio https://doi.org/10.1128/mBio.01558-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Corbett, D. & Roberts, I. S. The role of microbial polysaccharides in host-pathogen interaction. F1000 Biol. Rep. 1, 30 (2009).

    PubMed  PubMed Central  Google Scholar 

  182. Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect. Immun. 70, 3053–3060 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Valore, E. V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Investig. 101, 1633–1642 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Danka, E. S. & Hunstad, D. A. Cathelicidin augments epithelial receptivity and pathogenesis in experimental Escherichia coli cystitis. J. Infect. Dis. https://doi.org/10.1093/infdis/jiu577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bauckman, K. A. et al. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am. J. Physiol. Renal Physiol. 316, F814–F822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Haversen, L. A. et al. Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect. Immun. 68, 5816–5823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Arao, S. et al. Measurement of urinary lactoferrin as a marker of urinary tract infection. J. Clin. Microbiol. 37, 553–557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ghirotto, S. et al. The uromodulin gene locus shows evidence of pathogen adaptation through human evolution. J. Am. Soc. Nephrol. 27, 2983–2996 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose important work could not be included in this article owing to space limitations. J.D.S. discloses support for publication of this work from the National Institutes of Health (NIDDK) R01 DK115737, DK114035, and DK128088 (J.D.S.). J.D.R.R. discloses support by the National Institutes of Health (NIDDK) K01 DK128379.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the manuscript and edited the final product. E.S. wrote the introduction and the section on the clinical implications of pyelonephritis; L.S. wrote the sections on antibiotic resistance and bacterial virulence factors, and created the figures; B.B. and J.D.R.R. wrote the sections on immune cells; and J.D.S. wrote the sections on epithelial responses during pyelonephritis.

Corresponding authors

Correspondence to Laura Schwartz or John David Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Michael Zasloff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, L., de Dios Ruiz-Rosado, J., Stonebrook, E. et al. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 19, 658–671 (2023). https://doi.org/10.1038/s41581-023-00737-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00737-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing