Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Regioselective one-pot protection of glucose

Abstract

Detailed protocols for the regioselective protection of individual hydroxyls in monosaccharide units are described here. This expedient methodology incorporates up to seven reaction sequences, obviating the necessity to carry out intermittent tedious work-ups and time-consuming purifications. Using this TMSOTf-catalyzed one-pot protocol, the 2,3,4,6-tetra-O-trimethylsilylated hexopyranosides bearing an anomeric group could be transformed into a whole set of differentially protected 2-alcohols, 3-alcohols, 4-alcohols, 6-alcohols and fully protected monosaccharides in high yields. These tailor-made glycosyl donors and acceptors can then be used for stereoselective one-pot glycosylation for oligosaccharide synthesis. The total time for the preparation of a purified protected sugar unit ranges between 1 and 2 d. This process would otherwise take 1–2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Varki, A. et al. (eds.) Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  2. Wang, C.-C. et al. Regioselective one-pot protection of carbohydrates. Nature 446, 896–899 (2007).

    Article  CAS  Google Scholar 

  3. Wang, P.G. Sugars synthesized in a snap. Nat. Chem. Biol. 3, 309–310 (2007).

    Article  CAS  Google Scholar 

  4. Paulsen, H. Advances in selective chemical syntheses of complex oligosaccharides. Angew. Chem. Int. Ed. 21, 155–224 (1982).

    Article  Google Scholar 

  5. Ernst, B., Hart, G.W. & Sinaÿ, P. (eds.) Carbohydrates in Chemistry and Biology Vol. 1 (Wiley-VCH Verlag, Weinheim, 2000).

    Book  Google Scholar 

  6. Bertozzi, C.R. & Kiessling, L.L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  Google Scholar 

  7. Schofield, L. et al. Synthetic GPI as a candidate anti-toxin vaccine in model of malaria. Nature 418, 785–789 (2002).

    Article  CAS  Google Scholar 

  8. Yamada, H., Harada, T., Miyazaki, H. & Takahashi, T. One-pot sequential glycosylation: a new method for the synthesis of oligosaccharides. Tetrahedron Lett. 35, 3979–3982 (1994).

    Article  CAS  Google Scholar 

  9. Douglas, N.L., Ley, S.V., Lücking, U. & Warriner, S.L. Tuning glycoside reactivity: new tool for efficient oligosaccharide synthesis. J. Chem. Soc., Perkin Trans. 1, 51–65 (1998).

    Article  Google Scholar 

  10. Zhang, Z. et al. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753 (1999).

    Article  CAS  Google Scholar 

  11. Sears, P. & Wong, C.-H. Toward automated synthesis of oligosaccharides and glycoproteins. Science 291, 2344–2350 (2001).

    Article  CAS  Google Scholar 

  12. Plante, O.J., Palmacci, E.R. & Seeberger, P.H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  Google Scholar 

  13. Danishefsky, S.J., McClure, K.F., Randolph, J.T. & Ruggeri, R.B. A strategy for the solid-phase synthesis of oligosaccharides. Science 260, 1307–1309 (1993).

    Article  CAS  Google Scholar 

  14. Kim, J.-H., Yang, H., Park, J. & Boons, G.-J. A general strategy for stereoselective glycosylations. J. Am. Chem. Soc. 127, 12090–12097 (2005).

    Article  CAS  Google Scholar 

  15. Flitsch, S.L. Glycosylation with a twist. Nature 437, 201–202 (2005).

    Article  CAS  Google Scholar 

  16. Demchenko, A.V. Stereoselective chemical 1,2-cis-O-glycosylation: from 'sugar ray' to modern techniques of the 21st century. Synlett, 1225–1240 (2003).

  17. Pellissier, H. Use of O-glycosylation in total synthesis. Tetrahedron 61, 2947–2993 (2005).

    Article  CAS  Google Scholar 

  18. Kocienski, P.J. Protecting Groups 3rd ed. (Georg Thieme Verlag, Stuttgart, 2005).

    Book  Google Scholar 

  19. Wuts, P.G.M. Greene's Protective Groups in Organic Synthesis 4th ed. (John Wiley & Sons, New York, 2007).

    Google Scholar 

  20. Wright, J.A., Yu, J. & Spencer, J.B. Sequential removal of the benzyl-type protecting groups PMB and NAP by oxidative cleavage using CAN and DDQ. Tetrahedron Lett. 42, 4033–4036 (2001).

    Article  CAS  Google Scholar 

  21. Plante, O.J., Buchwald, S.L. & Seeberger, P.H. Halobenzyl ethers as protecting groups for organic synthesis. J. Am. Chem. Soc. 122, 7148–7149 (2000).

    Article  CAS  Google Scholar 

  22. Jobron, L. & Hindsgaul, O. Novel para-substituted benzyl ethers for hydroxyl group protection. J. Am. Chem. Soc. 121, 5835–5836 (1999).

    Article  CAS  Google Scholar 

  23. Shie, C.-R. et al. Cu(OTf)2 as an efficient and dual-purpose catalyst in the regioselective reductive ring opening of benzylidene acetals. Angew. Chem. Int. Ed. 44, 1665–1668 (2005).

    Article  CAS  Google Scholar 

  24. Tsunoda, T., Suzuki, M. & Noyori, R. A facile procedure for acetalization under aprotic conditions. Tetrahedron Lett. 21, 1357–1358 (1980).

    Article  CAS  Google Scholar 

  25. Hatakeyama, S. et al. Efficient reductive etherification of carbonyl compounds with alkoxytrimethylsilanes. Tetrahedron Lett. 35, 4367–4370 (1994).

    Article  CAS  Google Scholar 

  26. Wang, C.-C. et al. Synthesis of biologically potent α1,2-linked disaccharide derivatives via regioselective one-pot protection glycosylation. Angew. Chem. Int. Ed. 41, 2360–2362 (2002).

    Article  CAS  Google Scholar 

  27. Pangborn, A.B., Giardello, A., Grubbs, R.H., Rosen, R.K. & Timmers, F.J. Safe and convenient procedure for solvent purification. Organometallics 15, 1518–1520 (1996).

    Article  CAS  Google Scholar 

  28. Wulff, G. & Wichelhaus, J. Zur synthese von β-D-mannopyranosiden. Chem. Ber. 112, 2847–2853 (1979).

    Article  CAS  Google Scholar 

  29. Söderberg, E., Westman, J. & Oscarson, S. Rapid carbohydrate protecting group manipulations assisted by microwave dielectric heating. J. Carbohydr. Chem. 20, 397–410 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of Taiwan (NSC 94-2113-M-007-021, NSC 94-2627-M-007-002, NSC 95-2113-M-007-028-MY3, NSC 95-2627-M-007-002 and NSC 95-2752-B-007-002-PAE) and the Academia Sinica (AS-92-TP-A04, 94C007 and AS-95-TP-AB1). S.S.K. thanks Academia Sinica for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Cheng Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CC., Kulkarni, S., Lee, JC. et al. Regioselective one-pot protection of glucose. Nat Protoc 3, 97–113 (2008). https://doi.org/10.1038/nprot.2007.493

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing