Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation and culture of adult neurons and neurospheres

Abstract

Here we present a protocol for extraction and culture of neurons from adult rat or mouse CNS. The method proscribes an optimized protease digestion of slices, control of osmolarity and pH outside the incubator with Hibernate and density gradient separation of neurons from debris. This protocol produces yields of millions of cortical, hippocampal neurons or neurosphere progenitors from each brain. The entire process of neuron isolation and culture takes less than 4 h. With suitable growth factors, adult neuron regeneration of axons and dendrites in culture proceeds over 1–3 weeks to allow controlled studies in pharmacology, electrophysiology, development, regeneration and neurotoxicology. Adult neurospheres can be collected in 1 week as a source of neuroprogenitors ethically preferred over embryonic or fetal sources. This protocol emphasizes two differences between neuron differentiation and neurosphere proliferation: adhesion dependence and the differentiating power of retinyl acetate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: OptiPrep gradient separation of cortical neurons pooled from the brains of two 6-month-old C57/BL6 mice.
Figure 3: Hippocampal neurons in culture after isolation from a 6-month-old C57/BL6 mouse.
Figure 4: Cortical neurospheres from a 6-month-old C57/BL6 mouse.

Similar content being viewed by others

References

  1. Banker, G.A. & Cowan, W.M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425 (1977).

    Article  CAS  Google Scholar 

  2. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  3. Ahlemeyer, B. & Baumgart-Vogt, E. Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice. J. Neurosci. Methods 149, 110–120 (2005).

    Article  CAS  Google Scholar 

  4. Brewer, G.J. Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods 71, 143–155 (1997).

    Article  CAS  Google Scholar 

  5. Brewer, G.J. Age-related toxicity to lactate, glutamate, and beta-amyloid in cultured adult neurons. Neurobiol. Aging 19, 561–568 (1998).

    Article  CAS  Google Scholar 

  6. Brewer, G.J., Reichensperger, J.D. & Brinton, R.D. Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons. Neurobiol. Aging 27, 306–317 (2006).

    Article  CAS  Google Scholar 

  7. Nathan, B.P. et al. Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res. 928, 96–105 (2002).

    Article  CAS  Google Scholar 

  8. Parihar, M.S. & Brewer, G.J. Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial ROS production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons. J Neurosci. Res. 85, 1018–1032 (2007).

    Article  CAS  Google Scholar 

  9. Struble, R.G., Nathan, B.P., Cady, C., Cheng, X.Y. & McAsey, M. Estradiol regulation of astroglia and apolipoprotein E: an important role in neuronal regeneration. Exp. Gerontol. 42, 54–63 (2007).

    Article  CAS  Google Scholar 

  10. Zhou, L.P. et al. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors. Exp. Neurol. 203, 72–81 (2007).

    Article  CAS  Google Scholar 

  11. Yip, P.K. et al. Lentiviral vector expressing retinoic acid receptor beta 2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum. Mol. Genet. 15, 3107–3118 (2006).

    Article  CAS  Google Scholar 

  12. Tyler, W.J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 574, 787–803 (2006).

    Article  CAS  Google Scholar 

  13. Hurst, R.S. et al. A novel positive allosteric modulator of the alpha 7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J. Neurosci. 25, 4396–4405 (2005).

    Article  CAS  Google Scholar 

  14. Brewer, G.J. & Price, P.J. Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. NeuroReport 7, 1509–1512 (1996).

    Article  CAS  Google Scholar 

  15. Brewer, G.J. et al. Culture and regeneration of human neurons after brain surgery. J. Neurosci. Methods 107, 15–23 (2001).

    Article  CAS  Google Scholar 

  16. Xie, C., Markesbery, W.R. & Lovell, M.A. Survival of hippocampal and cortical neurons in a mixture of MEM+ and B27-supplemented neurobasal medium. Free Radic. Biol. Med. 28, 665–672 (2000).

    Article  CAS  Google Scholar 

  17. Viel, J.J., McManus, D.Q., Smith, S.S. & Brewer, G.J. Age- and concentration-dependent neuroprotection and toxicity by TNF in cortical neurons from beta-amyloid. J. Neurosci. Res. 64, 454–465 (2001).

    Article  CAS  Google Scholar 

  18. Eide, L. & McMurray, C.T. Culture of adult mouse neurons. BioTechniques 38, 99–104 (2005).

    Article  CAS  Google Scholar 

  19. Kivell, B.M., McDonald, F.J. & Miller, J.H. Serum-free culture of rat post-natal and fetal brainstem neurons. Brain Res. Dev. Brain Res. 120, 199–210 (2000).

    Article  CAS  Google Scholar 

  20. Zhang, W., Hu, Y., Newman, E.A. & Mulholland, M.W. Serum-free culture of rat postnatal neurons derived from the dorsal motor nucleus of the vagus. J. Neurosci. Methods 150, 1–7 (2006).

    Article  CAS  Google Scholar 

  21. Price, P.J. & Brewer, G.J. Protocols for Neural Cell Culture, 3rd edn. (eds. Fedoroff, S. & Richardson, A.) 255–264 (Humana Press, Inc., Totowa, New Jersey, 2000).

    Google Scholar 

  22. Gage, F.H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  Google Scholar 

  23. Caldwell, M.A. et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol. 19, 475–479 (2001).

    Article  CAS  Google Scholar 

  24. Tatebayashi, Y., Iqbal, K. & Grundke-Iqbal, I. Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J. Neurosci. 19, 5245–5254 (1999).

    Article  CAS  Google Scholar 

  25. Alexanian, A.R. & Nornes, H.O. Proliferation and regeneration of retrogradely labeled adult rat corticospinal neurons in culture. Exp. Neurol. 170, 277–282 (2001).

    Article  CAS  Google Scholar 

  26. Palmer, T.D., Ray, J. & Gage, F.H. FGF-2—responsive neuronal progenitors reside in proliferation and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    Article  CAS  Google Scholar 

  27. Zheng, T. et al. Transplantation of multipotent astrocytic stem cells into a rat model of neonatal hypoxic-ischemic encephalopathy. Brain Res. 1112, 99–105 (2006).

    Article  CAS  Google Scholar 

  28. Shetty, A.K. & Turner, D.A. In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35, 395–425 (1998).

    Article  CAS  Google Scholar 

  29. Gobbel, G.T., Choi, S.J., Beier, S. & Niranjan, A. Long-term cultivation of multipotential neural stem cells from adult rat subependyma. Brain Res. 980, 221–232 (2003).

    Article  CAS  Google Scholar 

  30. Evans, J. et al. Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J. Neurophysiol. 87, 1076–1085 (2002).

    Article  Google Scholar 

  31. Brewer, G.J. & Cotman, C.W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74 (1989).

    Article  CAS  Google Scholar 

  32. Kaplan, F.S. et al. Enhanced survival of rat neonatal cerebral cortical neurons at subatmospheric oxygen tensions in vitro . Brain Res. 384, 199–203 (1986).

    Article  CAS  Google Scholar 

  33. Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    Article  CAS  Google Scholar 

  34. Haynes, L.W. (ed.) The Neuron in Tissue Culture (John Wiley & Sons, New York, 1999).

    Google Scholar 

  35. Banker, G. & Goslin, K. (eds.) Culturing Nerve Cells 2nd edn. (The Bradford Book, MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  36. Meberg, P.J. & Miller, M.W. Culturing hippocampal and cortical neurons. Methods Cell Biol. 71, 111–127 (2003).

    Article  Google Scholar 

  37. Brewer, G.J., Lim, A., Capps, N.G. & Torricelli, J.R. Age-related calcium changes, oxyradical damage, caspase activation and nuclear condensation in hippocampal neurons in response to glutamate and beta-amyloid. Exp. Gerontol. 40, 426–437 (2005).

    Article  CAS  Google Scholar 

  38. Evans, M.S., Collings, M.A. & Brewer, G.J. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture. J. Neurosci. Methods 79, 37–46 (1998).

    Article  CAS  Google Scholar 

  39. Patel, J.R. & Brewer, G.J. Age-related changes in neuronal glucose uptake in response to glutamate and beta-amyloid. J. Neurosci. Res. 72, 527–536 (2003).

    Article  CAS  Google Scholar 

  40. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  Google Scholar 

  41. Davis, A.A. & Temple, S. A self-renewing multipotential stem cell in the embryonic rat cerebral cortex. Nature 372, 263–266 (1994).

    Article  CAS  Google Scholar 

  42. Temple, S. & Alvarez-Buylla, A. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9, 135–141 (1999).

    Article  CAS  Google Scholar 

  43. Ostenfeld, T. et al. Regional specification of rodent and human neurospheres. Brain Res. Dev. Brain Res. 134, 43–55 (2002).

    Article  CAS  Google Scholar 

  44. Mayer-Proschel, M., Kalyani, A.J., Mujtaba, T. & Rao, M.S. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785 (1997).

    Article  CAS  Google Scholar 

  45. Wohl, C.A. & Weiss, S. Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J. Neurobiol. 37, 281–290 (1998).

    Article  CAS  Google Scholar 

  46. Takahashi, J., Palmer, T.D. & Gage, F.H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81 (1999).

    Article  CAS  Google Scholar 

  47. Laywell, E.D. et al. Neuron-to-astrocyte transition: Phenotypic fluidity and the formation of hybrid asterons in differentiating neurospheres. J. Comp. Neurol. 493, 321–333 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Temple Foundation award from the Alzheimer Association and the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J Brewer.

Ethics declarations

Competing interests

Southern Illinois University receives royalties from Invitrogen for Neurobasal and B27 products. In partnership with his wife, Brewer is the founder and owner of BrainBits LLC, maker of Hibernate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewer, G., Torricelli, J. Isolation and culture of adult neurons and neurospheres. Nat Protoc 2, 1490–1498 (2007). https://doi.org/10.1038/nprot.2007.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.207

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing