Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum and classical criticality in a dimerized quantum antiferromagnet

This article has been updated

Abstract

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure–temperature phase diagram of TlCuCl3 extended to finite energies, revealing quantum and thermal critical dynamics.
Figure 2: INS spectra collected at Q = (0 4 0) r.l.u., the wavevector of the minimum energy gap in the quantum disordered phase, where magnetic order is induced with increasing pressure.
Figure 3: Spin dynamics at the quantum and thermal melting transitions.
Figure 4: Quantum and classical criticality.

Similar content being viewed by others

Change history

  • 09 April 2014

    In the version of this Article originally published online, in Fig. 2b the data points, the purple shaded region, the green dashed curve and a part of the solid black curve were missing. This has now been corrected in all versions of the Article.

References

  1. Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965–970 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  2. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    Article  ADS  Google Scholar 

  3. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  4. von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  5. Knafo, W., Raymond, S., Lejay, P. & Flouquet, J. Antiferromagnetic criticality at a heavy-fermion quantum phase transition. Nature Phys. 5, 753–757 (2009).

    Article  ADS  Google Scholar 

  6. Stockert, O. et al. Magnetically driven superconductivity in CeCu2Si2 . Nature Phys. 7, 119–124 (2011).

    Article  ADS  Google Scholar 

  7. Bourbonnais, C. & Jérome, D. in The Physics of Organic Superconductors and Conductors (ed. Lebed, A.) (Springer, 2008).

    Google Scholar 

  8. Kanoda, K. & Kato, R. Mott physics in organic conductors with triangular lattices. Annu. Rev. Condens. Matter Phys. 2, 167–188 (2011).

    Article  ADS  Google Scholar 

  9. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  10. Zhang, X-B., Hung, C-L., Tung, S-K. & Chin, C. Observation of quantum criticality with ultracold atoms in optical lattices. Science 335, 1070–1072 (2012).

    Article  ADS  Google Scholar 

  11. Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000).

    Article  ADS  Google Scholar 

  12. Giamarchi, T., Rüegg, Ch. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nature Phys. 4, 198–204 (2008).

    Article  ADS  Google Scholar 

  13. Tanaka, H., Goto, K., Fujisawa, M., Ono, T. & Uwatoko, Y. Magnetic ordering under high pressure in the quantum spin system TlCuCl3 . Physica B 329–333, 697–698 (2003).

    Article  ADS  Google Scholar 

  14. Rüegg, Ch. et al. Pressure-induced quantum phase transition in the spin-liquid TlCuCl3 . Phys. Rev. Lett. 93, 257201 (2004).

    Article  ADS  Google Scholar 

  15. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3 . Phys. Rev. B 69, 054423 (2004).

    Article  ADS  Google Scholar 

  16. Jin, S. & Sandvik, A. W. Universal Néel temperature in three-dimensional quantum antiferromagnets. Phys. Rev. B 85, 020409(R) (2012).

    Article  ADS  Google Scholar 

  17. Affleck, I. & Wellman, G. F. Longitudinal modes in quasi-one-dimensional antiferromagnets. Phys. Rev. B 46, 8934–8953 (1992).

    Article  ADS  Google Scholar 

  18. Lake, B., Tennant, D. A. & Nagler, S. E. Novel longitudinal mode in the coupled quantum chain compound KCuF3 . Phys. Rev. Lett. 85, 832–835 (2000).

    Article  ADS  Google Scholar 

  19. Rüegg, Ch. et al. Quantum magnets under pressure: Controlling elementary excitations in TlCuCl3 . Phys. Rev. Lett. 100, 205701 (2008).

    Article  ADS  Google Scholar 

  20. Oitmaa, J., Kulik, Y. & Sushkov, O. P. Universal finite-temperature properties of a three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Phys. Rev. B 85, 144431 (2012).

    Article  ADS  Google Scholar 

  21. Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011).

    Article  ADS  Google Scholar 

  22. Rüegg, Ch. et al. Quantum statistics of interacting dimer spin systems. Phys. Rev. Lett. 95, 267201 (2005).

    Article  ADS  Google Scholar 

  23. Normand, B. & Rüegg, Ch. Complete bond-operator theory of the two-chain spin ladder. Phys. Rev. B 83, 054415 (2011).

    Article  ADS  Google Scholar 

  24. Shevchenko, P. V., Sandvik, A. W. & Sushkov, O. P. Double-layer Heisenberg antiferromagnet at finite temperature: Brueckner Theory and quantum Monte Carlo simulations. Phys. Rev. B 61, 3475–3487 (2000).

    Article  ADS  Google Scholar 

  25. Oosawa, A. et al. Pressure-induced successive magnetic phase transitions in the spin gap system TlCuCl3 . J. Phys. Soc. Jpn 73, 1446–1449 (2004).

    Article  ADS  Google Scholar 

  26. Sachdev, S. Quantum Theory of Condensed Matter, presented at 24th Solvay Conference on Physics. Brussels, Oct 2008. Preprint at http://arxiv.org/abs/0901.4103 (2009)

  27. Zinn-Justin, J. Quantum Field Theory and Critical Phenomena (Oxford Univ. Press, (2002).

    Book  Google Scholar 

  28. Podolsky, D. S. & Sachdev, S. Spectral functions of the Higgs mode near two-dimensional quantum critical points. Phys. Rev. B 86, 054508 (2012).

    Article  ADS  Google Scholar 

  29. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article  ADS  Google Scholar 

  30. Kulik, Y. & Sushkov, O. P. Width of the longitudinal magnon in the vicinity of the O(3) quantum critical point. Phys. Rev. B 84, 134418 (2012).

    Article  ADS  Google Scholar 

  31. Littlewood, P. B. & Varma, C. M. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811–814 (1981).

    Article  ADS  Google Scholar 

  32. Endres, M. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    Article  ADS  Google Scholar 

  33. Talbot, E. F., Glyde, H. R., Stirling, W. G. & Svensson, E. C. Temperature dependence of S(Q, ω) in liquid 4He under pressure. Phys. Rev. B 38, 11229–11244 (1988).

    Article  ADS  Google Scholar 

  34. Fåk, B. & Dorner, B. Phonon line shapes and excitation energies. Physica B 234–236, 1107–1108 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Sachdev, A. Sandvik and especially M. Vojta for helpful comments. We thank the sample environment team at the Institut Laue Langevin, where these measurements were performed, for their assistance. This work was supported by the EPSRC, the Royal Society, the Swiss NSF, and the NSF of China under Grant No. 11174365.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and Ch.R. carried out the experiments with the help of instrument scientist M.B. TlCuCl3 single crystals were synthesized by K.W.K. The theoretical and experimental framework was conceived by Ch.R., D.F.M. and B.N. Data refinement and figure preparation were performed by P.M. and Ch.R. The text was written by B.N. and Ch.R.

Corresponding author

Correspondence to Ch. Rüegg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, P., Normand, B., Krämer, K. et al. Quantum and classical criticality in a dimerized quantum antiferromagnet. Nature Phys 10, 373–379 (2014). https://doi.org/10.1038/nphys2902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing