Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum disordered ground state in the triangular-lattice magnet NaRuO2

Abstract

It has long been hoped that spin liquid states might be observed in materials that realize the triangular-lattice Hubbard model. However, weak spin–orbit coupling and other small perturbations often induce conventional spin freezing or magnetic ordering. Sufficiently strong spin–orbit coupling, however, can renormalize the electronic wavefunction and induce anisotropic exchange interactions that promote magnetic frustration. Here we show that the cooperative interplay of spin–orbit coupling and correlation effects in the triangular-lattice magnet NaRuO2 produces an inherently fluctuating magnetic ground state. Despite the presence of a charge gap, we find that low-temperature spin excitations generate a metal-like term in the specific heat and a continuum of excitations in neutron scattering, reminiscent of spin liquid states previously found in triangular-lattice organic magnets. Further cooling produces a crossover into a different, highly disordered spin state whose dynamic spin autocorrelation function reflects persistent fluctuations. These findings establish NaRuO2 as a cousin to organic, Heisenberg spin liquid compounds with a low-temperature crossover in quantum disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lattice and electronic band structures of NaRuO2.
Fig. 2: Electrical transport, magnetic susceptibility and heat capacity data characterizing the low-temperature properties of NaRuO2.
Fig. 3: Inelastic neutron scattering data collected on NaRuO2.
Fig. 4: Muon spin relaxation data and analysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://doi.org/10.25349/D9R626.

References

  1. Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3. J. Phys. Soc. Jpn 71, 2109–2112 (2002).

    Google Scholar 

  2. Sahebsara, P. & Senechal, D. Hubbard model on the triangular lattice: spiral order and spin liquid. Phys. Rev. Lett. 100, 136402 (2008).

    ADS  Google Scholar 

  3. Laubach, M., Thomale, R., Platt, C., Hanke, W. & Li, G. Phase diagram of the Hubbard model on the anisotropic triangular lattice. Phys. Rev. B 91, 245125 (2015).

    ADS  Google Scholar 

  4. Yamashita, S. et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 4, 459–462 (2008).

    Google Scholar 

  5. Isono, T. et al. Gapless quantum spin liquid in an organic spin-1/2 triangular-lattice κ−H3(Cat-EDT-TTF)2. Phys. Rev. Lett. 112, 177201 (2014).

    ADS  Google Scholar 

  6. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

    ADS  Google Scholar 

  7. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    ADS  Google Scholar 

  8. Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058–1064 (2019).

    Google Scholar 

  9. Mackenzie, A. P. The properties of ultrapure delafossite metals. Rep. Prog. Phys. 80, 032501 (2017).

    ADS  Google Scholar 

  10. Collins, M. F. & Petrenko, O. A. Review/Synthèse: triangular antiferromagnets. Can. J. Phys. 75, 605–655 (1997).

    Google Scholar 

  11. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    ADS  Google Scholar 

  12. Moon, S. J. et al. Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n = 1, 2, and ∞). Phys. Rev. Lett. 101, 226402 (2008).

    ADS  Google Scholar 

  13. Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112(R) (2014).

    ADS  Google Scholar 

  14. Yadav, R. et al. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep. 6, 37925 (2016).

    ADS  Google Scholar 

  15. Koitzsch, A. et al. Jeff description of the honeycomb Mott insulator α−RuCl3. Phys. Rev. Lett. 117, 126403 (2016).

    ADS  Google Scholar 

  16. Shikano, M., Delmas, C. & Darriet, J. NaRuO2 and NaxRuO2yH2O: new oxide and oxyhydrate with two dimensional RuO2 layers. Inorg. Chem. 43, 1214–1216 (2004).

    Google Scholar 

  17. Yang, H.-Y., Läuchli, A. M., Mila, F. & Schmidt, K. P. Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice. Phys. Rev. Lett. 105, 267204 (2010).

    ADS  Google Scholar 

  18. Kos, P. & Punk, M. Quantum spin liquid ground states of the Heisenberg-Kitaev model on the triangular lattice. Phys. Rev. B 95, 024421 (2017).

    ADS  Google Scholar 

  19. Li, K., Yu, S.-L. & Li, J.-X. Global phase diagram, possible chiral spin liquid, and topological superconductivity in the triangular Kitaev–Heisenberg model. New J. Phys. 17, 043032 (2015).

    MathSciNet  ADS  Google Scholar 

  20. Ortiz, B. R., Sarte, P. M., Avidor, A. H. & Wilson, S. D. Defect control in the Heisenberg-Kitaev candidate material NaRuO2. Phys. Rev. Mater. 6, 104413 (2022).

    Google Scholar 

  21. Sinn, S. et al. Electronic structure of the Kitaev material α-RuCl3 probed by photoemission and inverse photoemission spectroscopies. Sci. Rep. 6, 39544 (2016).

    ADS  Google Scholar 

  22. Jamieson, H. C. & Manchester, F. D. The magnetic susceptibility of Pd, PdH and PdD between 4 and 300 K. J. Phys. F: Met. Phys. 2, 323 (1972).

    ADS  Google Scholar 

  23. Smith, S. J. et al. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am. Mineral. 94, 236–243 (2009).

    Google Scholar 

  24. Schliesser, J. M. & Woodfield, B. F. Lattice vacancies responsible for the linear dependence of the low-temperature heat capacity of insulating materials. Phys. Rev. B 91, 024109 (2015).

    ADS  Google Scholar 

  25. Ni, J. M. et al. Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtMe3Sb[Pd(dmit)2]2. Phys. Rev. Lett. 123, 247204 (2019).

    ADS  Google Scholar 

  26. Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).

    ADS  Google Scholar 

  27. Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623 (1998).

    ADS  Google Scholar 

  28. Sachdev, S. & Ye, J. Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411 (1992).

    ADS  Google Scholar 

  29. Noakes, D. R. & Kalvius, G. M. Anomalous zero-field muon spin relaxation in highly disordered magnets. Phys. Rev. B 56, 2352 (1997).

    ADS  Google Scholar 

  30. Hodges, J. A. et al. First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7. Phys. Rev. Lett. 88, 077204 (2002).

    ADS  Google Scholar 

  31. Uemura, Y. J. et al. Spin fluctuations in frustrated kagomé lattice system SrCr8Ga4O19 studied by muon spin relaxation. Phys. Rev. Lett. 73, 3306 (1994).

    ADS  Google Scholar 

  32. Dally, R. et al. Short-range correlations in the magnetic ground state of Na4Ir3O8. Phys. Rev. Lett. 113, 247601 (2014).

    ADS  Google Scholar 

  33. Shockley, A. C., Bert, F., Orain, J. C., Okamoto, Y. & Mendels, P. Frozen state and spin liquid physics in Na4Ir3O8: an NMR study. Phys. Rev. Lett. 115, 047201 (2015).

    ADS  Google Scholar 

  34. Keren, A. Muons as probes of dynamical spin fluctuations: some new aspects. J. Phys.: Condens. Matter 16, S4603 (2004).

    ADS  Google Scholar 

  35. Keren, A., Mendels, P., Campbell, I. A. & Lord, J. Probing the spin-spin dynamical autocorrelation function in a spin glass above Tg via muon spin relaxation. Phys. Rev. B 77, 1386 (1996).

    ADS  Google Scholar 

  36. Robinson, K., Gibbs, G. V. & Ribbe, P. H. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567–570 (1971).

    ADS  Google Scholar 

  37. Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3. Phys. Rev. B 85, 180403(R) (2012).

    ADS  Google Scholar 

  38. Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat. Phys. 11, 462–466 (2015).

    Google Scholar 

  39. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    Google Scholar 

  40. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α−RuCl3. Phys. Rev. B 93, 134423 (2016).

    ADS  Google Scholar 

  41. Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3. Phys. Rev. B 85, 180403 (2012).

    ADS  Google Scholar 

  42. Lee, S.-S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states and possible application to κ−(BEDT−TTF)2Cu2(CN)3. Phys. Rev. Lett. 95, 036403 (2005).

    ADS  Google Scholar 

  43. Motrunich, O. I. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ−(ET)2Cu2(CN)3. Phys. Rev. B 72, 045105 (2005).

    ADS  Google Scholar 

  44. Verger, L., Guignard, M. & Delmas, C. Sodium electrochemical deintercalation and intercalation in O3-NaRhO2 and P2-NaxRhO2 layered oxides. Inorg. Chem. 58, 2543–2549 (2019).

    Google Scholar 

  45. Granroth, G. E. et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. J. Phys.: Conf. Ser. 251, 012058 (2010).

    Google Scholar 

  46. Ehlers, G., Podlesnyak, A. A. & Kolesniko, A. I. The cold neutron chopper spectrometer at the Spallation Neutron Source—a review of the first 8 years of operation. Rev. Sci. Instrum. 87, 093902 (2016).

    ADS  Google Scholar 

  47. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532 (2008).

    Google Scholar 

  48. Suter, A. & Wojek, B. M. Musrfit: a free platform-independent framework for μSR data analysis. Phys. Procedia 30, 69–73 (2012).

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  50. Kressea, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    ADS  Google Scholar 

  53. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

    ADS  Google Scholar 

  54. Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank R. Valentí and L. Hozoi for sharing preliminary ab initio calculations of the magnetic exchange interactions. This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, under award no. DE-SC0017752 (S.D.W., B.R.O. and P.M.S.). Work by L.B. was supported by the DOE, Office of Science, Basic Energy Sciences, under award no. DE-FG02-08ER46524. Part of this work is based on experiments performed at the Swiss Muon Source SμS, Paul Scherrer Institute, Villigen, Switzerland. R.S. and A.H. acknowledge support from the National Science Foundation (NSF) through Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering and Information (Q-AMASE-i), Quantum Foundry at the University of California, Santa Barbara (DMR-1906325). A portion of this research used the resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We thank the National Institute of Standards and Technology for access to their neutron facilities. Certain commercial equipment, instruments or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

S.D.W. wrote the manuscript with input from all the co-authors. B.R.O., P.M.S. and A.H. synthesized the material and performed the resistivity, magnetization and neutron scattering measurements. A.H. and R.S. performed the ab initio density functional theory calculations. E.K., M.J.G. and C.W. performed the muon spin relaxation measurements. A.I.K., C.M.B., D.M.P., K.M.T. and A.H.A. performed the neutron scattering measurements. L.B. provided theoretical insights into modelling the material. All the authors participated in the planning and discussions of experiments.

Corresponding author

Correspondence to Stephen D. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Jie Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, B.R., Sarte, P.M., Avidor, A.H. et al. Quantum disordered ground state in the triangular-lattice magnet NaRuO2. Nat. Phys. 19, 943–949 (2023). https://doi.org/10.1038/s41567-023-02039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02039-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing