Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet

Abstract

Manipulating the macroscopic phases of solids using ultrashort light pulses has resulted in spectacular phenomena, including metal–insulator transitions1,2,3, superconductivity4 and subpicosecond modification of magnetic order5. The development of this research area strongly depends on the understanding and optical control of fundamental interactions in condensed matter, in particular the exchange interaction. However, disentangling the timescales relevant for the contributions of the exchange interaction and spin dynamics to the exchange energy, Eex, is a challenge. Here, we introduce femtosecond stimulated Raman scattering to unravel the ultrafast photo-induced dynamics of magnetic excitations at the edge of the Brillouin zone. We find that femtosecond laser excitation of the antiferromagnet KNiF3 triggers a spectral shift of the two-magnon line, the energy of which is proportional to Eex. By unravelling the photo-induced modification of the two-magnon line frequency from a dominating nonlinear optical effect, we find that Eex is increased by the electromagnetic stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of the FSRS experiment on KNiF3.
Figure 2: SRS measurements on KNiF3.
Figure 3: Experimental peak shift of the 2M line from the RG and RL components of the stimulated Raman spectra.

Similar content being viewed by others

References

  1. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  ADS  Google Scholar 

  2. Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nature Mater. 10, 101–105 (2011).

    Article  ADS  Google Scholar 

  3. de Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nature Mater. 12, 882–886 (2013).

    Article  ADS  Google Scholar 

  4. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  5. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  6. Rhie, H.-S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201 (2003).

    Article  ADS  Google Scholar 

  7. Carley, R. et al. Femtosecond laser excitation drives ferromagnetic gadolinium out of magnetic equilibrium. Phys. Rev. Lett. 109, 057401 (2012).

    Article  ADS  Google Scholar 

  8. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2010).

    Article  ADS  Google Scholar 

  9. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  10. Subkhangulov, R. R. et al. All-optical manipulation and probing of the df exchange interaction in EuTe. Sci. Rep. 4, 4368–4372 (2014).

    Article  Google Scholar 

  11. Bossini, D., Kalashnikova, A. M., Pisarev, R. V., Rasing, T. & Kimel, A. V. Controlling coherent and incoherent spin dynamics by steering the photoinduced energy flow. Phys. Rev. B 89, 060405(R) (2014).

    Article  ADS  Google Scholar 

  12. Cottam, M. G. & Lockwood, D. J. Light Scattering in Magnetic Solids (Wiley, 1986).

    Google Scholar 

  13. Elliott, R. J. & Thorpe, M. F. The effects of magnon–magnon interaction on the two-magnon spectra of antiferromagnets. J. Phys. C 2, 1630–1643 (1969).

    Article  ADS  Google Scholar 

  14. Cottam, M. G. Theory of two-magnon Raman scattering in antiferromagnets at finite temperatures. J. Phys. C 5, 1461–1474 (1972).

    Article  ADS  Google Scholar 

  15. Hayes, W. & Loudon, R. Scattering of Light by Crystals (Wiley, 1978).

    Google Scholar 

  16. Martin, T., Merlin, R., Huffman, D. & Cardona, M. Resonant two magnon Raman scattering in α-Fe2O3 . Solid State Commun. 22, 565–567 (1977).

    Article  ADS  Google Scholar 

  17. Lockwood, D. J., Cottam, M. G. & Baskey, J. H. One- and two-magnon excitations in NiO. J. Magn. Magn. Mater. 104, 1053–1054 (1992).

    Article  ADS  Google Scholar 

  18. Abdalian, A. T. et al. Magnon Raman scattering in the two-dimensional antiferromagnet KFeF4 . J. Magn. Magn. Mater. 104, 1047–1048 (1992).

    Article  ADS  Google Scholar 

  19. Fleury, P. A., Porto, S. P. S., Cheesman, L. E. & Guggenheim, H. J. Light scattering by spin waves in FeF2 . Phys. Rev. Lett. 17, 84–87 (1966).

    Article  ADS  Google Scholar 

  20. Chinn, S. R., Zeiger, H. J. & O'Connor, J. R. Two-magnon Raman scattering and exchange interactions in antiferromagnetic KNiF3 and K2NiF4 and ferrimagnetic RbNiF3 . Phys. Rev. B 3, 1709–1735 (1971).

    Article  ADS  Google Scholar 

  21. Fausti, D., Misochko, O. & van Loosdrecht, P. Ultrafast photoinduced structure phase transition in antimony single crystals. Phys. Rev. B 80, 161207(R) (2009).

    Article  ADS  Google Scholar 

  22. Rullière, C. (ed.) Femtosecond Laser Pulses: Principles and Experiments (Springer, 2005).

    Book  Google Scholar 

  23. McCamant, D. W., Kukura, P., Yoon, S. & Mathies, R. A. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75, 4971–4980 (2004).

    Article  ADS  Google Scholar 

  24. Pontecorvo, E. et al. Femtosecond stimulated Raman spectrometer in the 320–520 nm range. Opt. Express 19, 1107–1112 (2011).

    Article  ADS  Google Scholar 

  25. Pontecorvo, E., Ferrante, C., Elles, C. G. & Scopigno, T. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 21, 6866–6872 (2013).

    Article  ADS  Google Scholar 

  26. Harbola, U., Umapathy, S. & Mukamel, S. Loss and gain signals in broadband stimulated-Raman spectra: theoretical analysis. Phys. Rev. A 88, 011801 (2013).

    Article  ADS  Google Scholar 

  27. Schilbe, P., Ramsteiner, M. & Rieder, K. H. Two-magnon Raman scattering in KNiF3. A comparison of experiment with Monte Carlo calculations in the ordered and disordered regions. J. Phys. Condens. Matter 9, 4979–4986 (1997).

    Article  ADS  Google Scholar 

  28. Batignani, G., Fumero, G., Mukamel, S. & Scopigno, T. Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 10454–10461 (2015).

    Article  Google Scholar 

  29. Mukamel, S. & Biggs, J. D. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134, 161101 (2011).

    Article  ADS  Google Scholar 

  30. Fingerhut, B. P., Dorfman, K. E. & Mukamel, S. Probing the conical intersection dynamics of the RNA base uracil by UV-pump stimulated-Raman-probe signals; ab initio simulations. J. Chem. Theory Comput. 10, 1172–1188 (2014).

    Article  Google Scholar 

  31. Mikhaylovskiy, R. V. et al. Inverse magneto-refraction as a mechanism for laser modification of spin–spin exchange parameters and subsequent terahertz emission from iron oxides. Preprint at http://arxiv.org/abs/1412.7094 (2014).

  32. Secchi, A., Brener, S., Lichtenstein, A. & Katsnelson, M. Non-equilibrium magnetic interactions in strongly correlated systems. Ann. Phys. 333, 221–271 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  33. Ivanov, Y., Zhurova, E. A., Zhurov, V. V., Tanaka, K. & Tsirelson, V. Electron density and electrostatic potential of KNiF3: multipole, orbital and topological analyses of vacuum-camera-imaging plate and four-circle diffractometer data. Acta Crystallogr. B 55, 923–930 (1999).

    Article  Google Scholar 

  34. Nouet, J., Zarembowitch, A., Pisarev, R. V., Ferre, J. & Lecomte, M. Determination of T N for KNiF3 through elastic, magneto-optical, and heat capacity measurements. Appl. Phys. Lett. 21, 161–162 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R.V. Pisarev for providing the sample, P.H.M. van Loosdrecht and A. Caretta for performing spontaneous Raman measurements and Th. Rasing for continuous support. S. Mukamel is acknowledged for critical reading of the manuscript and useful insights. This research was partially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), de Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC) under the European Union's Seventh Framework Program (FP7/2007-2013) grant agreements no. 207916 (Femtoscopy) and no. 257280 (Femtomagnetism).

Author information

Authors and Affiliations

Authors

Contributions

D.B., G.C., A.K. and T.S. conceived the project. D.B. and A.K. suggested the idea to probe the exchange energy via the 2M line. G.B., N.D.P., C.F., E.P. and T.S. designed the experiment and the method to interpret the FSRS data to obtain the 2ML dynamics. E.P., with assistance from G.B., D.B. and N.D.P., led the experimental activity. G.B., with help from N.D.P. and C.F., performed data analysis and numerical modelling. T.S. directed the research, and wrote the manuscript with G.B. and D.B. All authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to T. Scopigno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batignani, G., Bossini, D., Di Palo, N. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nature Photon 9, 506–510 (2015). https://doi.org/10.1038/nphoton.2015.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing