Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast control of magnetic interactions via light-driven phonons

Abstract

Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phonon-driven reconfiguration of the magnetic potential in DyFeO3.
Fig. 2: Ultrafast dynamics of the soft mode frequency.
Fig. 3: Out-of-equilibrium metastable magnetic state.
Fig. 4: Ultrafast phonon-induced magnetic phase transition.

Similar content being viewed by others

Data availability

All data presented in this work are publicly available with identifier https://doi.org/10.5281/zenodo.4338556. Source data are provided with this paper.

Code availability

The TB2J code for calculating the exchange interactions is freely available under the BSD 2 clause license and can be found at https://github.com/mailhexu/TB2J/. The Abinit code for the DFT calculations is an open source code with GNU General Public License and is freely available at https://www.abinit.org/.

References

  1. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Google Scholar 

  2. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    CAS  Google Scholar 

  3. Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    CAS  Google Scholar 

  4. Nova, T., Disa, A., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    CAS  Google Scholar 

  5. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    CAS  Google Scholar 

  6. Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Google Scholar 

  7. Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    CAS  Google Scholar 

  8. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    CAS  Google Scholar 

  9. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    CAS  Google Scholar 

  10. Mikhaylovskiy, R. et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015).

    CAS  Google Scholar 

  11. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    CAS  Google Scholar 

  12. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    CAS  Google Scholar 

  13. Först, M. et al. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Phys. Rev. Lett. 112, 157002 (2014).

    Google Scholar 

  14. Tobey, R., Prabhakaran, D., Boothroyd, A. & Cavalleri, A. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

    CAS  Google Scholar 

  15. Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).

    CAS  Google Scholar 

  16. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    CAS  Google Scholar 

  17. Maehrlein, S. F. et al. Dissecting spin–phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

    Google Scholar 

  18. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS  Google Scholar 

  19. Zvezdin, A. & Matveev, V. Theory of the magnetic properties of dysprosium orthoferrite. Sov. Phys. JETP 50, 543–548 (1979).

    Google Scholar 

  20. Khim, T.-Y. et al. Strain control spin reorientation transition in DyFeO3/SrTiO3 epitaxial film. Appl. Phys. Lett. 99, 072501 (2011).

    Google Scholar 

  21. Fechner, M. et al. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mater. 2, 064401 (2018).

    CAS  Google Scholar 

  22. Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res. 2, 043035 (2020).

    CAS  Google Scholar 

  23. Hase, M., Kitajima, M., Nakashima, S.-i & Mizoguchi, K. Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation. Phys. Rev. Lett. 88, 067401 (2002).

    Google Scholar 

  24. Yamaguchi, K., Kurihara, T., Watanabe, H., Nakajima, M. & Suemoto, T. Dynamics of photoinduced change of magnetoanisotropy parameter in orthoferrites probed with terahertz excited coherent spin precession. Phys. Rev. B 92, 064404 (2015).

    Google Scholar 

  25. Kalashnikova, A. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 99, 167205 (2007).

    CAS  Google Scholar 

  26. Balbashov, A., Volkov, A., Lebedev, S., Mukhin, A. & Prokhorov, A. High-frequency magnetic properties of dysprosium orthoferrite. Zh. Eksp. Teor. Fiz. 88, 974–987 (1985).

    CAS  Google Scholar 

  27. Berton, A. & Sharon, B. Specific heat of DyFeO3 from 1.2°–80° K. J. Appl. Phys. 39, 1367–1368 (1968).

    CAS  Google Scholar 

  28. Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

    Google Scholar 

  29. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Google Scholar 

  30. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Google Scholar 

  31. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).

    CAS  Google Scholar 

  32. Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).

    Google Scholar 

  33. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Google Scholar 

  34. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  36. Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

    Google Scholar 

  37. Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).

    CAS  Google Scholar 

  38. Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42, 337–351 (2008).

    CAS  Google Scholar 

  39. Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    CAS  Google Scholar 

  40. Topsakal, M. & Wentzcovitch, R. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci. 95, 263–270 (2014).

    CAS  Google Scholar 

  41. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  42. Liechtenstein, A., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467 (1995).

    CAS  Google Scholar 

  43. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Heirman for assistance in measuring the linear absorption in the MIR spectral range, E. Lesne for the X-ray diffraction measurements and E. Demler, R. Citro, M. Cuoco and T. C. van Thiel for fruitful discussions. This work was supported by the EU through the European Research Council, grant no. 677458 (AlterMateria), the Netherlands Organization for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience programme (NanoFront) and the VENI-VIDI-VICI programme, the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 339813 (Exchange), ERC Grant agreement 852050 (MAGSHAKE), the programme Leading Scientist of the Russian Ministry of Science and Higher Education (14.Z50.31.0034), the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (grant no. K2-2019-006), implemented by a governmental decree dated 16 March 2013, N211. E.B. and A.S. thank the FRS-FNRS, ARC AIMED project, the CÉCI supercomputer facilities (grant no. 2.5020.1) and Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (grant no. 1117545).

Author information

Authors and Affiliations

Authors

Contributions

A.D.C. conceived the project together with D.A. D.A. and J.R.H. carried out the experiments and analysed the data. R.V.M. and A.V.K. identified the material system for the project and contributed to the analysis. B.A.I. and Y.M.B. contributed to the theoretical treatment of the experimental results. A.S. and E.B. performed the DFT calculations. All the authors discussed the results. The manuscript was written by D.A., J.R.H. and A.D.C. with feedback from all the co-authors.

Corresponding authors

Correspondence to D. Afanasiev or A. D. Caviglia.

Ethics declarations

Competing interests

Authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6 and Figs. 1–12.

Source data

Source Data Fig. 1

Source data for figures.

Source Data Fig. 2

Source data for figures.

Source Data Fig. 3

Source data for figures.

Source Data Fig. 4

Source data for figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, D., Hortensius, J.R., Ivanov, B.A. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021). https://doi.org/10.1038/s41563-021-00922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00922-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing