Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube

Abstract

Optical transitions between electronic levels are restricted according to the selection rules governed by the parities of electronic wavefunctions1. If this restriction can be removed, then drastic improvements in the efficiency and diversity of photoreactions may be realized. Because the selection rules are based on the long wavelength approximation, wherein the field amplitude is assumed to be constant within a molecule, a localized plasmon that has an electromagnetic field with a significantly high gradient is expected to violate the conventional limitations of the optical response2. Here, we demonstrate the possibility of controlling the optical electronic transitions of a single-walled carbon nanotube (SWNT) using metal nanodimers with a controlled nanogap distance. Highly systematic identification of the excitations of individual SWNTs through well-resolved Raman signals implies a breakdown of the selection rules due to the strong field gradient in the radial direction of the SWNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy bands and optical transitions of a semiconducting SWNT.
Figure 2: Enhancement in Raman intensity for an SWNT in a nanogap.
Figure 3: Kataura plots.
Figure 4: Characteristic SERS spectra at ωRBM ≈ 160 cm−1.
Figure 5: Selection-rule breakdown as revealed by an EDDA calculation.

Similar content being viewed by others

References

  1. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. in Modern Molecular Photochemistry of Organic Molecules Ch. 3, 109–167 (University Science Books, 2010).

    Google Scholar 

  2. Burstein, E., Lundqvist, S. & Mills, D. L. in Surface Enhanced Raman Scattering (eds Chang, R. K. & Furtak, T. E.) 67–89 (Plenum, 1982).

    Book  Google Scholar 

  3. Ru, L. E. C. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier Science, 2008).

    Google Scholar 

  4. Kedziora, G. S. & Schatz, G. C. Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy. Spectrochim. Acta A 55, 625–638 (1999).

    Article  ADS  Google Scholar 

  5. Ayars, E. J., Hallen, H. D. & Jahncke C. L. Electric field gradient effects in Raman spectroscopy. Phys. Rev. Lett. 85, 4180–4183 (2000).

    Article  ADS  Google Scholar 

  6. Kneipp, K. et al. Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters. Phys. Rev. B 63, 081401 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. Polubotko, A. M. Some anomalies of the SER spectra of symmetrical molecules adsorbed on transition metal substrates: consideration by the dipole–quadrupole SERS theory. J. Raman Spectrosc. 36, 522–532 (2005).

    Article  ADS  Google Scholar 

  8. Iida, T. & Ishihara, H. Unconventional control of excited states of a dimer molecule by a localized light field between metal nanostructures. Phys. Status Solidi (a) 206, 980–984 (2009).

    Article  ADS  Google Scholar 

  9. Iida, T., Aiba, Y. & Ishihara, H. Anomalous optical selection rule of an organic molecule controlled by extremely localized light field. Appl. Phys. Lett. 98, 053108 (2011).

    Article  ADS  Google Scholar 

  10. Jain, P., Ghosh, D., Baer, R., Rabani, E. & Paul, A. Near-field manipulation of spectroscopic selection rules on the nanoscale. Proc. Natl Acad. Sci. USA 109, 8016–8019 (2012).

    Article  ADS  Google Scholar 

  11. Research Highlights, Nanophotonics: Rewriting selection rules. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2012.104 (2012).

  12. Mahmoud, M. A., Chamanzar, M., Adibi, A. & El-Sayed, M. A. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 134, 6434–6442 (2012).

    Article  Google Scholar 

  13. Ajiki, H. & Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn 62, 1255–1266 (1993).

    Article  ADS  Google Scholar 

  14. Ajiki, H. & Ando, T. Aharonov–Bohm effect in carbon nanotubes. Physica B 201, 349–352 (1994).

    Article  ADS  Google Scholar 

  15. Uryu, S. & Ando, T. Exciton absorption of perpendicularly polarized light in carbon nanotubes. Phys. Rev. B 74, 155411 (2006).

    Article  ADS  Google Scholar 

  16. Duesberg, G. S., Loa, I., Burghard, M., Syassen, K. & Roth, S. Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436–5439 (2000).

    Article  ADS  Google Scholar 

  17. Jorio, A. et al. Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys. Rev. Lett. 90, 107403 (2003).

    Article  ADS  Google Scholar 

  18. Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  ADS  Google Scholar 

  19. Hayazawa, N., Yano, T., Watanabe, H., Inouye, Y. & Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 376, 174–180 (2003).

    Article  ADS  Google Scholar 

  20. Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).

    Article  Google Scholar 

  21. Araujo, P. T. et al. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98, 067401 (2007).

    Article  ADS  Google Scholar 

  22. Miyauchi, Y., Ajiki, H. & Maruyama, S. Electron–hole asymmetry in single-walled carbon nanotubes probed by direct observation of transverse quasidark excitons. Phys. Rev. B 81, 121415 (2010).

    Article  ADS  Google Scholar 

  23. Miyauchi, Y., Oba, M. & Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440 (2006).

    Article  ADS  Google Scholar 

  24. Nguyen, K., Gaur, A. & Shim, M. Fano lineshape and phonon softening in single isolated metallic carbon nanotubes. Phys. Rev. Lett. 98, 145504 (2007).

    Article  ADS  Google Scholar 

  25. Nagasawa, F., Takase, M., Nabika, H. & Murakoshi, K. Polarization characteristics of surface-enhanced Raman scattering from a small number of molecules at the gap of a metal nano-dimer. Chem. Commun. 47, 4514–4516 (2011).

    Article  Google Scholar 

  26. Sawai, Y., Takimoto, B., Nabika, H., Ajito, K. & Murakoshi, K. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. J. Am. Chem. Soc. 129, 1658–1662 (2007).

    Article  Google Scholar 

  27. Purcell, E. M. & Pennypacker, C. R. Scattering and absorption of light by non-spherical dielectric grains. Astrophys. J. 186, 705–714 (1973).

    Article  ADS  Google Scholar 

  28. Lu, J. Y. & Chang, Y. H. Implementation of an efficient dielectric function into the finite difference time domain method for simulating the coupling between localized surface plasmons of nanostructures. Superlatt. Microstruct. 47, 60–65 (2010).

    Article  ADS  Google Scholar 

  29. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  ADS  Google Scholar 

  30. Heller W. R. & Marcus, A. A note on the propagation of excitation in an idealized crystal. Phys. Rev. 84, 809–813 (1951).

    Article  ADS  Google Scholar 

  31. Ajiki, H. Exciton wave functions with electron–hole exchange interaction: application to carbon nanotubes. J. Phys. Soc. Jpn 82, 054701 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Saito (Tohoku University) for helpful discussions on Raman spectral analysis. This work was partially supported by Grants-in-Aid for scientific research from the Ministry of Education, Science and Culture, Japan. Support from the Priority Area ‘Strong Photon–Molecule Coupling Fields (no. 470)’ is particularly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.T., H.A., Y.M., K.K., M.N., H.N., S.Y., H.I. and K.M. performed experiments and data analysis. H.A. carried out calculations on the electronic structure of SWNTs. Y.M. and H.I. developed the EDDA and performed calculations with this method. M.T., H.A., Y.M., S.Y., H.I. and K.M. contributed to writing the paper.

Corresponding authors

Correspondence to Hajime Ishihara or Kei Murakoshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takase, M., Ajiki, H., Mizumoto, Y. et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nature Photon 7, 550–554 (2013). https://doi.org/10.1038/nphoton.2013.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing