Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain-engineered artificial atom as a broad-spectrum solar energy funnel

Abstract

An optoelectronic material with a spatially varying bandgap that is tunable is highly desirable for use in photovoltaics, photocatalysis and photodetection. Elastic strain has the potential to be used to achieve rapid and reversible tuning of the bandgap. However, as a result of plasticity or fracture, conventional materials cannot sustain a high enough elastic strain to create sufficient changes in their physical properties. Recently, an emergent class of materials—named ‘ultrastrength materials’—have been shown to avoid inelastic relaxation up to a significant fraction of their ideal strength. Here, we illustrate theoretically and computationally that elastic strain is a viable agent for creating a continuously varying bandgap profile in an initially homogeneous, atomically thin membrane. We propose that a photovoltaic device made from a strain-engineered MoS2 monolayer will capture a broad range of the solar spectrum and concentrate excitons or charge carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introducing inhomogeneous strain and classifying funnelling mechanisms.
Figure 2: Strain-dependent electronic and optical properties of MoS2 monolayer.
Figure 3: Structural and physical properties of nanoindented MoS2 monolayer.
Figure 4: Schematic of charge extraction near the centre of the atomic membrane.

Similar content being viewed by others

References

  1. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  2. Henry, B. R. & Greenlay, W. R. A. Detailed features in the local mode overtone bands of ethane, neopentane, tetramethylbutane, and hexamethylbenzene. J. Chem. Phys. 72, 5516–5524 (1980).

    Article  ADS  Google Scholar 

  3. De Vos, A. Detailed balance limit of the efficiency of tandem solar-cells. J. Phys. D 13, 839–846 (1980).

    Article  ADS  Google Scholar 

  4. Kang, Z., Tsang, C. H. A., Wong, N-B., Zhang, Z. & Lee, S-T. Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129, 12090–12091 (2007).

    Article  Google Scholar 

  5. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    Article  ADS  Google Scholar 

  6. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  7. Zhu, T., Li, J., Ogata, S. & Yip, S. Mechanics of ultra-strength materials. MRS Bull. 34, 167–172 (2009).

    Article  Google Scholar 

  8. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  9. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  10. Liu, F., Ming, P. M. & Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007).

    Article  ADS  Google Scholar 

  11. Feng, J. et al. Patterning of graphene. Nanoscale 4, 4883–4899 (2012).

    Article  ADS  Google Scholar 

  12. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    Article  Google Scholar 

  13. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  14. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  15. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  16. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  17. Li, J. The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007).

    Article  Google Scholar 

  18. Li, J., van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  ADS  Google Scholar 

  19. Hoffmann, R., Howell, J. M. & Rossi, A. R. Bicapped tetrahedral, trigonal prismatic, and octahedral alternatives in main and transition group six-coordination. J. Am. Chem. Soc. 98, 2484–2492 (1976).

    Article  Google Scholar 

  20. Landau, L. D., Lifshits, E. M., Kosevich, A. M. & Pitaevskii, L. P. Theory of Elasticity 3rd English edn 12 (Pergamon Press, 1986).

    Google Scholar 

  21. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  23. Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V. V. & Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 . Nano Res. 5, 43–48 (2012).

    Article  Google Scholar 

  24. Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H–MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B 85, 033305 (2012).

    Article  ADS  Google Scholar 

  25. Hedin, L. New method for calculating one-particle Green's function with application to electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article  ADS  Google Scholar 

  26. Hybertsen, M. S. & Louie, S. G. First-principles theory of quasiparticles: calculation of band-gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985).

    Article  ADS  Google Scholar 

  27. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  28. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  ADS  Google Scholar 

  29. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  ADS  Google Scholar 

  30. Nisoli, C., Lammert, P. E., Mockensturm, E. & Crespi, V. H. Carbon nanostructures as an electromechanical bicontinuum. Phys. Rev. Lett. 99, 045501 (2007).

    Article  ADS  Google Scholar 

  31. Tersoff, J. New empirical-approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).

    Article  ADS  Google Scholar 

  32. Jin, C. R. Large deflection of circular membrane under concentrated force. Appl. Math. Mech. Engl. 29, 889–896 (2008).

    Article  Google Scholar 

  33. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices 20–30 (Clarendon Press, 1985).

    Google Scholar 

  34. Shimizu, M. Long-range pair transport in graded band gap and its applications. J. Lumin. 119, 51–54 (2006).

    Article  Google Scholar 

  35. Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in GaAs single quantum well. Phys. Rev. B 40, 6442–6445 (1989).

    Article  ADS  Google Scholar 

  36. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  ADS  Google Scholar 

  37. Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  Google Scholar 

  38. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    Article  ADS  Google Scholar 

  39. Franzl, T., Klar, T. A., Schietinger, S., Rogach, A. L. & Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 4, 1599–1603 (2004).

    Article  ADS  Google Scholar 

  40. Han, J. H. et al. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Mater. 9, 833–839 (2010).

    Article  ADS  Google Scholar 

  41. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    Article  ADS  Google Scholar 

  42. Lagally, M. G. Silicon nanomembranes. MRS Bull. 32, 57–63 (2007).

    Article  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  47. Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic-properties. Phys. Rev. B 28, 1809–1834 (1983).

    Article  ADS  Google Scholar 

  48. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  ADS  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  50. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate helpful discussions with S.G. Johnson and M. Loncar, and acknowledge support from the NSF (DMR-1120901) and AFOSR (FA9550-08-1-0325), as well as NSFC Project 11174009 and 973 Programs of China (2010CB631003, 2011CBA00109, 2012CB619402, 2013CB921900).

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed the project. J.F., X.F.Q. and C.W.H. carried out the calculations and the modelling. J.F., X.F.Q. and J.L. wrote the paper. All authors contributed to discussions of the results.

Corresponding author

Correspondence to Ju Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Qian, X., Huang, CW. et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon 6, 866–872 (2012). https://doi.org/10.1038/nphoton.2012.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.285

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing