Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-resolution microchip optomechanical accelerometer

Abstract

The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics1,2. Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive3,4, piezo-electric5, tunnel-current6,7 or optical8,9,10,11 methods. Although optical detection provides superior displacement resolution8, resilience to electromagnetic interference and long-range readout7, current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth8,9,10. Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity12 monolithically integrated with a nanotethered test mass of high mechanical Q-factor13. This device achieves an acceleration resolution of 10 µg Hz−1/2 with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction14,15,16,17, setting the stage for a new class of motional sensors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of accelerometer design.
Figure 2: Experimental system and noise data.
Figure 3: Frequency-dependence of sensitivity and resolution.
Figure 4: Independent tuning of bandwidth and resolution.

References

  1. Krishnan, G., Kshirsagar, C. U., Ananthasuresh, G. K. & Bhat, N. Micromachined high-resolution accelerometers. J. Indian Inst. Sci. 87, 333–361 (2007).

    Google Scholar 

  2. Yazdi, N., Ayazi, F. & Najafi, K. Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998).

    Article  Google Scholar 

  3. Acar, C. & Shkel, A. M. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. J. Micromech. Microeng. 13, 634–645 (2003).

    Article  ADS  Google Scholar 

  4. Kulah, H., Chae, J., Yazdi, N. & Najafi, K. Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE J. Solid-State Circ. 41, 352–361 (2006).

    Article  ADS  Google Scholar 

  5. Tadigadapa, S. & Mateti, K. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009).

    Article  ADS  Google Scholar 

  6. Liu, C. et al. Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J. Microelectromech. Syst. 7, 235–244 (1998).

    Article  Google Scholar 

  7. Nakstad, H. & Kringlebotn, J. T. Oil and gas applications: probing oil fields. Nature Photon. 2, 147–149 (2008).

    Article  ADS  Google Scholar 

  8. Krishnamoorthy, U. et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuat. A 145–146, 283–290 (2008).

    Article  Google Scholar 

  9. Zandi, K. et al. in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS) 839–842 (IEEE, 2010).

    Book  Google Scholar 

  10. Noell, W. et al. Applications of SOI-based optical MEMS. IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).

    Article  ADS  Google Scholar 

  11. Berkoff, T. A. & Kersey, A. D. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).

    Article  ADS  Google Scholar 

  12. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  13. Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006).

    Article  ADS  Google Scholar 

  14. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  15. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Article  ADS  Google Scholar 

  16. Corbitt, T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007).

    Article  ADS  Google Scholar 

  17. Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett. 103, 103601 (2009).

    Article  ADS  Google Scholar 

  18. Zwahlen, P. et al. in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS) 631–634 (IEEE, 2010).

    Book  Google Scholar 

  19. Endevco (2006) Accelerometer Selection Based on Applications, Technical paper 291; available at http://www.endevco.com/news/archivednews/2006/2006_08/2006_08_f4.pdf.

  20. Braginsky, V. B. Measurement of Weak Forces in Physics Experiments (University of Chicago Press, 1977).

    Google Scholar 

  21. Anetsberger, G. et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Phys. Rev. A 82, 061804(R) (2010).

    Article  ADS  Google Scholar 

  22. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  23. Yasumura, K. Y. et al. Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000).

    Article  Google Scholar 

  24. Michael, C. P., Borselli, M., Johnson, T. J., Chrystal, C. & Painter, O. An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express 15, 4745–4752 (2007).

    Article  ADS  Google Scholar 

  25. Li, Y. T., Lee, S. Y. & Pastan, H. L. Air damped capacitance accelerometers and velocimeters. IEEE Trans. Indust. Electron. Control Instrum. IECI-17, 44–48 (1970).

    Article  Google Scholar 

  26. Allen, H. V., Terry, S. C. & De Bruin, D. W. Accelerometer systems with self-testable features. Sens. Actuat. 20, 153–161 (1989).

    Article  Google Scholar 

  27. Camacho, R. M., Chan, J., Eichenfield, M. & Painter, O. Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Opt. Express 17, 15726–15735 (2009).

    Article  ADS  Google Scholar 

  28. Endevco, Model 752A13 ISOTRON accelerometer; available at http://www.endevco.com/datasheets/752A1.pdf.

  29. Winger, M. et al. A chip-scale integrated cavity-electro-optomechanics platform. Opt. Express 19, 24905–24921 (2011).

    Article  ADS  Google Scholar 

  30. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Administration QuASaR program through a grant from the Army Research Office. T.D.B. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (grant no. 0703267).

Author information

Authors and Affiliations

Authors

Contributions

A.G.K., M.W. and T.D.B. performed sample design, fabrication, optical measurements and data analysis. O.P. and Q.L. developed the device concept and supervised measurements and analysis. All authors worked together on writing the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, A., Winger, M., Blasius, T. et al. A high-resolution microchip optomechanical accelerometer. Nature Photon 6, 768–772 (2012). https://doi.org/10.1038/nphoton.2012.245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing