Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial beam self-cleaning in multimode fibres

Abstract

Multimode optical fibres are enjoying renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre (SMF) systems and by recent advances in multimode complex nonlinear optics1,2,3,4,5,6,7,8,9,10,11,12,13. In this work, we demonstrate that standard multimode fibres (MMFs) can be used as ultrafast all-optical tools for the transverse beam manipulation of high-power laser pulses. Our experimental data show that the Kerr effect in a graded-index (GRIN) MMF is the driving mechanism that overcomes speckle distortions, and leads to a counterintuitive effect that results in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam reshaping into the fundamental mode of a MMF can be achieved even in the absence of a dissipative process such as stimulated scattering (Raman or Brillouin)14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental nonlinear dynamics of beam self-cleaning in a GRIN MMF.
Figure 2: Experimental analysis of temporal and spatial coherence of beam self-cleaning in a GRIN MMF.
Figure 3: Brightness enhancement and statistical analysis of beam self-cleaning in a GRIN MMF.
Figure 4: Experimental cut-back analysis of beam propagation in a GRIN MMF.
Figure 5: Numerical results of beam propagation in a GRIN MMF.

Similar content being viewed by others

References

  1. Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  2. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space division multiplexing in optical fibers. Nat. Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  3. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photon. 9, 306–310 (2015).

    Article  ADS  Google Scholar 

  4. Wright, L. G., Wabnitz, S., Chistodoulides, D. N. & Wise, F. W. Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves. Phys. Rev. Lett. 115, 223902 (2015).

    Article  ADS  Google Scholar 

  5. Renninger, W. H. & Wise, F. W. Optical solitons in graded-index multimode fibres. Nat. Commun. 4, 1719 (2013).

    Article  ADS  Google Scholar 

  6. Yu, S.-S., Chien, Ch.-H., Lai, Y. & Wang, J. Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity. Opt. Commun. 119, 167–170 (1995).

    Article  ADS  Google Scholar 

  7. Gurgov, H. C. & Cohen, O. Spatiotemporal pulse-train solitons. Opt. Express 17, 7052–7058 (2009).

    Article  ADS  Google Scholar 

  8. Burgess, I. B., Peccianti, M., Assanto, G. & Morandotti, R. Accessible light bullets via synergetic nonlinearities. Phys. Rev. Lett. 102, 203903 (2009).

    Article  ADS  Google Scholar 

  9. Picozzi, A., Millot, G. & Wabnitz, S. Nonlinear virtues of multimode fibre. Nat. Photon. 9, 289–291 (2015).

    Article  ADS  Google Scholar 

  10. Longhi, S. Modulational instability and space–time dynamics in nonlinear parabolic-index optical fibers. Opt. Lett. 28, 2363–2365 (2003).

    Article  ADS  Google Scholar 

  11. Buch, S. & Agrawal, G. P. Soliton stability and trapping in multimode fibers. Opt. Lett. 40, 225–228 (2015).

    Article  ADS  Google Scholar 

  12. Krupa, K. et al. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves. Phys. Rev. Lett. 116, 183901 (2016).

    Article  ADS  Google Scholar 

  13. Wright, L. G. et al. Self-organized instability in graded-index multimode fibres. Nat. Photon. 10, 771–776 (2016).

    Article  ADS  Google Scholar 

  14. Chiang, K. S. Stimulated Raman scattering in a multimode optical fiber: self-focusing or mode competition? Opt. Commun. 95, 235–238 (1993).

    Article  ADS  Google Scholar 

  15. Terry, N. B., Alley, T. G. & Russell, T. H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers. Opt. Express 15, 17509–17519 (2007).

    Article  ADS  Google Scholar 

  16. Barmes, I., Witte, S. & Eikema, K. S. E. Spatial and spectral coherent control with frequency combs. Nat. Photon. 7, 38–42 (2013).

    Article  ADS  Google Scholar 

  17. Mahalati, R. N., Askarov, D., Wilde, J. P. & Kahn, J. M. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt. Express 20, 14321–14337 (2012).

    Article  ADS  Google Scholar 

  18. Papadopoulos, I. N., Farahi, S., Moser, Ch. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    Article  ADS  Google Scholar 

  19. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015).

    Article  ADS  Google Scholar 

  20. Lombard, L., Brignon, A., Huignard, J.-P. & Lallier, E. Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers. Opt. Lett. 31, 158–160 (2006).

    Article  ADS  Google Scholar 

  21. Lushnikov, P. M. & Vladimirova, N. Nonlinear combining of laser beams. Opt. Lett. 39, 3429–3432 (2014).

    Article  ADS  Google Scholar 

  22. Ascheri, P., Garnier, G., Michel, C., Doya, V. & Picozzi, A. Condensation and thermalization of classical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011).

    Article  ADS  Google Scholar 

  23. Mafi, A. Pulse propagation in a short nonlinear graded-index multimode optical fiber. J. Light. Technol. 30, 2803–2811 (2012).

    Article  ADS  Google Scholar 

  24. Trillo, S. & Wabnitz, S. Nonlinear nonreciprocity in a coherent mismatched directional coupler. Appl. Phys. Lett. 49, 752–754 (1986).

    Article  ADS  Google Scholar 

  25. Hellwig, T., Schnack, M., Walbaum, T., Dobner, S. & Fallnich, C. Experimental realization of femtosecond transverse mode conversion using optically induced transient long-period grating. Opt. Express 22, 24951–24958 (2014).

    Article  ADS  Google Scholar 

  26. Anglin, J. R. & Vardi, A. Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory. Phys. Rev. A 64, 013605 (2001).

    Article  ADS  Google Scholar 

  27. Poletti, F. & Horak, P. Dynamics of femtosecond supercontinuum generation in multimode fibers. Opt. Express 17, 6134–6147 (2009).

    Article  ADS  Google Scholar 

  28. Marcuse, D. Theory of Dielectric Optical Waveguides (Academic, 1974).

    Google Scholar 

  29. Modotto, D. et al. Ge-doped microstructured multicore fiber for customizable supercontinuum generation. IEEE Photon. J. 3, 1149–1156 (2011).

    Article  ADS  Google Scholar 

  30. Sun, C. et al. Observation of the kinetic condensation of classical waves. Nat. Phys. 8, 470–474 (2012).

    Article  Google Scholar 

  31. Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  32. Acebron, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.K., A.T., B.M.S., M.F., A.B. and V.C. acknowledge the financial support provided by Bpifrance OSEO (Industrial Strategic Innovation Programme) and Horiba Médical (Dat@diag no. I1112018W), by Région Limousin (C409-SPARC) and ANR Labex SIGMA-LIM. S.W. acknowledges support by the Italian Ministry of University and Research (MIUR) (grants 2012BFNWZ2 and 2015KEZNYM), the European Community via the Horizon 2020 CARDIALLY project and the Ministry of Education and Science of the Russian Federation (14.Y26.31.0017). G.M. acknowledges support from the iXcore research foundation, Photcom Région Bourgogne and ANR Labex Action. The authors thank F. Wise, L. Wright, Z. Liu and A. Picozzi for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and V.C. carried out the experiments. A.T. and S.W. performed the numerical simulations and theoretical analysis. All the authors analysed and interpreted the obtained results, and participated equally in the discussions and in the writing of the manuscript.

Corresponding author

Correspondence to K. Krupa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7325 kb)

Supplementary Information

Supplementary Movie 1 (MP4 725 kb)

Supplementary Information

Supplementary Movie 2 (MP4 1060 kb)

Supplementary Information

Supplementary Movie 3 (MP4 1681 kb)

Supplementary Information

Supplementary Movie 4 (MP4 6752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupa, K., Tonello, A., Shalaby, B. et al. Spatial beam self-cleaning in multimode fibres. Nature Photon 11, 237–241 (2017). https://doi.org/10.1038/nphoton.2017.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing