Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of magnonic frequency combs by exceptional points

Abstract

Frequency combs have high time–frequency accuracy, which makes them useful for applications in precision spectroscopy, ultra-sensitive detection and atomic clocks. Traditional methods of creating frequency combs hinge on material nonlinearities, which are often weak. These methods require high power densities to surpass their initiation thresholds, subsequently limiting their potential use. Here we demonstrate a nonlinear coupling process that efficiently generates magnonic frequency combs by exploiting exceptional points in a coupled system of two different magnon modes. Our approach is a simple and optimal path to produce magnonic frequency combs at low pump power with excellent tunability of exceptional points.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of PIM–KM coupling and enhanced nonlinear coupling near an EP.
Fig. 2: Constructing EPs in a coupled PIM–KM system.
Fig. 3: Exceptional lines.
Fig. 4: Giant enhancement of MFCs by EPs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from Zenodo at https://doi.org/10.5281/zenodo.10807440 (ref. 48). Source data are provided with this paper.

Code availability

The MATLAB codes for drawing figures in this work are available from the corresponding authors upon reasonable request.

References

  1. Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Google Scholar 

  2. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Google Scholar 

  3. Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Google Scholar 

  4. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Google Scholar 

  5. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Google Scholar 

  6. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Google Scholar 

  7. Lezius, M. et al. Space-borne frequency comb metrology. Optica 3, 1381–1387 (2016).

    ADS  Google Scholar 

  8. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Google Scholar 

  9. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Google Scholar 

  10. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13, 146–157 (2019).

    ADS  Google Scholar 

  11. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    ADS  Google Scholar 

  12. Cao, L., Qi, D., Peng, R., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).

    ADS  Google Scholar 

  13. Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).

    ADS  Google Scholar 

  14. Wu, S. et al. Hybridized frequency combs in multimode cavity electromechanical system. Phys. Rev. Lett. 128, 153901 (2022).

    ADS  Google Scholar 

  15. Wang, Z. et al. Magnonic frequency comb through nonlinear magnon-skyrmion scattering. Phys. Rev. Lett. 127, 037202 (2021).

    ADS  Google Scholar 

  16. Zhao, C. et al. Dissipative-coupling-induced transparency and high-order sidebands with Kerr nonlinearity in a cavity-magnonics system. Phys. Rev. Appl. 18, 044074 (2022).

    ADS  Google Scholar 

  17. Hula, T. et al. Spin-wave frequency combs. Appl. Phys. Lett. 121, 112404 (2022).

    ADS  Google Scholar 

  18. Rao, J. W. et al. Unveiling a pump-induced magnon mode via its strong interaction with Walker modes. Phys. Rev. Lett. 130, 046705 (2023).

    ADS  Google Scholar 

  19. Xiong, H. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundam. Res. 3, 8–14 (2023).

    Google Scholar 

  20. Hache, T. et al. Control of four-magnon scattering by pure spin current in a magnonic waveguide. Phys. Rev. Appl. 20, 014062 (2023).

    ADS  Google Scholar 

  21. Zhang, C. et al. Control of magnon–polariton hybridization with a microwave pump. Phys. Rev. Appl. 20, 024074 (2023).

    ADS  Google Scholar 

  22. Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949).

    ADS  Google Scholar 

  23. Morrish, A. H. The Physical Principles of Magnetism (Wiley, 2001).

  24. Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001).

    ADS  Google Scholar 

  25. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet  Google Scholar 

  26. Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376, 184–188 (2022).

    ADS  Google Scholar 

  27. Kononchuk, R., Cai, J., Ellis, F., Thevamaran, R. & Kottos, T. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature 607, 697–702 (2022).

    ADS  Google Scholar 

  28. Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    ADS  Google Scholar 

  29. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    ADS  Google Scholar 

  30. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS  Google Scholar 

  31. Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

    ADS  Google Scholar 

  32. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Google Scholar 

  33. Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    ADS  Google Scholar 

  34. Pick, A., Lin, Z., Jin, W. & Rodriguez, A. W. Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points. Phys. Rev. B 96, 224303 (2017).

    ADS  Google Scholar 

  35. Lin, Z., Pick, A., Lončar, M. & Rodriguez, A. W. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 117, 107402 (2016).

    ADS  Google Scholar 

  36. Lü, X.-Y., Jing, H., Ma, J.-Y. & Wu, Y. \({{{\mathcal{P}}}}{{{\mathcal{T}}}}\)-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett. 114, 253601 (2015).

    ADS  Google Scholar 

  37. Bu, J.-T. et al. Enhancement of quantum heat engine by encircling a Liouvillian exceptional point. Phys. Rev. Lett. 130, 110402 (2023).

    ADS  Google Scholar 

  38. Jing, H. et al. Pt-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    ADS  Google Scholar 

  39. Doloca, N. R., Meiners-Hagen, K., Wedde, M., Pollinger, F. & Abou-Zeid, A. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol. 21, 115302 (2010).

    ADS  Google Scholar 

  40. Juan, Y.-S. & Lin, F.-Y. Demonstration of arbitrary channel selection utilizing a pulse-injected semiconductor laser with a phase-locked loop. Opt. Express 19, 1057–1064 (2011).

    ADS  Google Scholar 

  41. Fukushima, S., Silva, C., Muramoto, Y. & Seeds, A. J. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode. J. Light. Technol. 21, 3043–3051 (2003).

    ADS  Google Scholar 

  42. Sasaki, R., Nii, Y. & Onose, Y. Magnetization control by angular momentum transfer from surface acoustic wave to ferromagnetic spin moments. Nat. Commun. 12, 2599 (2021).

    ADS  Google Scholar 

  43. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  44. Yu, T., Luo, Z. & Bauer, G. E. Chirality as generalized spin–orbit interaction in spintronics. Phys. Rep. 1009, 1–115 (2023).

    ADS  MathSciNet  Google Scholar 

  45. Yu, T. et al. Magnon accumulation in chirally coupled magnets. Phys. Rev. Lett. 124, 107202 (2020).

    ADS  Google Scholar 

  46. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    ADS  Google Scholar 

  47. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    ADS  Google Scholar 

  48. Wang, C. Data of ‘Enhancement of Magnonic Frequency Combs by Exceptional Points’. Zenodo https://doi.org/10.5281/zenodo.10807440 (2024).

Download references

Acknowledgements

This work has been funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS; Grant No. XDB0580000 to B.M.Y.), the National Natural Science Foundation of China (NSFC; Grant No. 12204306 to J.W.R. and Grant No. 12122413 to B.M.Y.), the Youth Innovation Promotion Association of CAS (Grant No. 2020247 to B.M.Y.), the Science and Technology Commission of Shanghai Municipality (STCSM; Grant Nos. 21JC1406200, 23JC1404100 and 22JC1403300 to B.M.Y.), the Shanghai Institute of Technical Physics (SITP) Independent Foundation (B.M.Y.), the Shanghai Pujiang Program (Grant No. 22PJ1410700 to J.W.R.), the Qilu Young Scholar Program of Shandong University (J.W.R.), the NSFC (Grant Nos. 12227901 and 11991063 to W.L.), the National Key R&D Program of China (Grant No. 2022YFA1405200 to Y.P.W.), the NSFC (Grant Nos. 92265202 and 12174329 to Y.P.W. and Grant Nos. 0214012051 and 12374109 to T.Y.), the National Key R&D Program of China (Grant No. 2023YFA1406600 to T.Y.), startup grants from Huazhong University of Science and Technology (Grant Nos. 3004012185 and 3004012198 to T.Y.), the National Key R&D Program of China (Grant No. 2022YFA1404600 to L.X.S.) and the Strategic Priority Research Program of CAS (Grant No. XDB43010200 to L.X.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.W.R. and B.M.Y. conceived this study and designed the experimental set-up. C.Y.W., J.W.R. and B.M.Y. performed the measurements and data analysis. J.W.R. built the theoretical model and wrote the supplementary document. J.W.R., B.M.Y., C.Y.W., T.Y., Y.P.W., L.X.S., Z.J.C., K.X.Z. and W.L. together contributed to the writing of the paper. W.L. supervised this work.

Corresponding authors

Correspondence to Jinwei Rao, Bimu Yao or Wei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Peng Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Tables 1 and 2.

Supplementary Video 1

Right-handed polarization of the microwave field at the cross centre, when the phase difference between the two pump signals was −90°.

Supplementary Video 2

Linear polarization of the microwave field at the cross centre, when the phase difference between the two pump signals was 0°.

Supplementary Video 3

Left-handed polarization of the microwave field at the cross centre, when the phase difference between the two pump signals was 90°.

Source data

Source Data Fig. 2

Measured transmission, coupling strength and calculation results at different polarizations.

Source Data Fig. 4

Measured radiation spectra and theoretical calculations of MFCs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Rao, J., Chen, Z. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02478-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing