Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast hot-carrier-dominated photocurrent in graphene

Abstract

The combination of its high electron mobility1,2,3,4,5, broadband absorption6 and ultrafast luminescence7,8,9,10 make graphene attractive for optoelectronic and photonic applications11,12,13, including transparent electrodes14, mode-locked lasers15 and high-speed optical modulators16. Photo-excited carriers that have not cooled to the temperature of the graphene lattice are known as hot carriers, and may limit device speed and energy efficiency. However, their roles in charge and energy transport are not fully understood17,18,19,20. Here, we use time-resolved scanning photocurrent microscopy to demonstrate that hot carriers, rather than phonons, dominate energy transport across a tunable graphene p–n junction excited by ultrafast laser pulses. The photocurrent response time varies from 1.5 ps at room temperature to 4 ps at 20 K, implying a fundamental bandwidth of 500 GHz (refs 12, 13, 21). Gate-dependent pump–probe measurements demonstrate that both thermoelectric and built-in electric field effects contribute to the photocurrent, with the contribution from each depending on the junction configuration. The photocurrent produced by a single pulsed laser also displays multiple polarity reversals as a function of carrier density, which is a possible signature of impact ionization19,22,23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Standard photocurrent microscopy of a graphene device.
Figure 2: Power dependence of the pump–probe measurements.
Figure 3: Temperature dependence of photocurrent amplitude and dynamics.
Figure 4: Gate dependence of pump–probe measurements implying two contributions.

Similar content being viewed by others

References

  1. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  2. Du, X., Skachko, I., Barker, A., & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  3. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  4. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  6. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  7. Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    Article  CAS  Google Scholar 

  8. Liu, W-T. et al. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation. Phys. Rev. B 82, 081408 (2010).

    Article  Google Scholar 

  9. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  Google Scholar 

  10. Stöhr, R. J., Kolesov, R., Pflaum, J. & Wrachtrup, J. Fluorescence of laser-created electron-hole plasma in graphene. Phys. Rev. B 82, 121408 (2010).

    Article  Google Scholar 

  11. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  12. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  CAS  Google Scholar 

  13. Xia, F., Mueller, T., Lin, Y-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  14. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  15. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  CAS  Google Scholar 

  16. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  CAS  Google Scholar 

  17. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  CAS  Google Scholar 

  18. Peters, E. C., Lee, E. J. H., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene p–n junction. Appl. Phys. Lett. 97, 193102 (2010).

    Article  Google Scholar 

  19. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  20. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  21. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  22. Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).

    Article  Google Scholar 

  23. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410 (2006).

    Article  Google Scholar 

  24. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  CAS  Google Scholar 

  25. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

    Article  Google Scholar 

  26. Mai, S., Syzranov, S. V. & Efetov, K. B. Photocurrent in a visible-light graphene photodiode. Phys. Rev. B 83, 033402 (2011).

    Article  Google Scholar 

  27. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  CAS  Google Scholar 

  28. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  29. Rao, G., Freitag, M., Chiu, H-Y., Sundaram, R. S. & Avouris, P. Raman and photocurrent imaging of electrical stress-induced pn junctions in graphene. ACS Nano 5, 5848–5854 (2011).

    Article  CAS  Google Scholar 

  30. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Article  Google Scholar 

  31. Butscher, S., Milde, F., Hirtschulz, M., Malic, E. & Knorr, A. Hot electron relaxation and phonon dynamics in graphene. Appl. Phys. Lett. 91, 203103 (2007).

    Article  Google Scholar 

  32. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  CAS  Google Scholar 

  33. Tse, W-K. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).

    Article  Google Scholar 

  34. Grosse, K. L., Bae, M-H., Lian, F., Pop, E. & King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nature Nanotech. 6, 287–290 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Zhong for helpful suggestions on device fabrication and T. Norris for useful discussions. X. Xu acknowledges support from DARPA YFA. The research was supported in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DE-SC0002197). D. Sun acknowledges partial support from IBM (4910031201). A. Jones was supported by the NSF Graduate Research Fellowship (DGE-0718124). Device fabrication was performed at the University of Washington Nanotechnology User Facility funded by the NSF. X. Xu thanks B. Heckel, B. Blinov and L. Sorensen for help with the laboratory set-up.

Author information

Authors and Affiliations

Authors

Contributions

X.X. conceived the experiments. G.A. fabricated the devices, assisted by A.J., J.R. and D.S. Measurements were performed by D.S., with X.X., G.A. and D.H.C. providing assistance. W.Y. contributed to the theoretical explanation. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Aivazian, G., Jones, A. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech 7, 114–118 (2012). https://doi.org/10.1038/nnano.2011.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing