Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector

Abstract

Optical-to-electrical conversion in graphene is a central phenomenon for realizing anticipated ultrafast and low-power-consumption information technologies. However, revealing its mechanism and intrinsic timescale require uncharted terahertz electronics and device architectures. Here we succeeded in resolving optical-to-electrical conversion processes in high-quality graphene via the on-chip electrical readout of an ultrafast photothermoelectric current. By suppressing the time constant of a resistor–capacitor circuit using a resistive zinc oxide top gate, we constructed a gate-tunable graphene photodetector with a bandwidth of up to 220 GHz. Measuring the non-local photocurrent dynamics, we found that the photocurrent extraction from the electrode is quasi-instantaneous without a measurable carrier transit time across several-micrometre-long graphene, following the Shockley–Ramo theorem. The time for photocurrent generation is exceptionally tunable from immediate to >4 ps, and its origin is identified as Fermi-level-dependent intraband carrier–carrier scattering. Our results bridge the gap between ultrafast optical science and device engineering, accelerating ultrafast graphene optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Set-up for on-chip ultrafast electrical readout.
Fig. 2: Instantaneous Shockley–Ramo response and tunable HCM.
Fig. 3: Cooling time in samples with different carrier mobilities.
Fig. 4: Electrical readout versus optoelectrical readout.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, K. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018).

    Article  ADS  Google Scholar 

  2. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article  ADS  Google Scholar 

  3. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  4. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  5. Shiue, R. J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    Article  ADS  Google Scholar 

  6. Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019).

    Article  ADS  Google Scholar 

  7. Marconi, S. et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat. Commun. 12, 806 (2021).

    Article  ADS  Google Scholar 

  8. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article  ADS  Google Scholar 

  9. Massicotte, M., Soavi, G., Principi, A. & Tielrooij, K.-J. Hot carriers in graphene—fundamentals and applications. Nanoscale 13, 8376–8411 (2021).

    Article  Google Scholar 

  10. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  Google Scholar 

  11. Song, J. C. W., Tielrooij, K. J., Koppens, F. H. L. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article  ADS  Google Scholar 

  12. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  ADS  Google Scholar 

  13. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  14. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    Article  Google Scholar 

  15. Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

    Article  ADS  Google Scholar 

  16. Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene–metal interfaces. J. Phys. Condens. Matter 27, 164207 (2015).

    Article  ADS  Google Scholar 

  17. Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article  ADS  Google Scholar 

  18. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  ADS  Google Scholar 

  19. Mics, Z. et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun. 6, 7655 (2015).

    Article  ADS  Google Scholar 

  20. Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

    Article  ADS  Google Scholar 

  21. Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci. Adv. 4, eaar5313 (2018).

    Article  ADS  Google Scholar 

  22. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  23. Pogna, E. A. A. et al. Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons. ACS Nano. 15, 11285–11295 (2021).

    Article  Google Scholar 

  24. Rohde, G. et al. Ultrafast formation of a Fermi–Dirac distributed electron gas. Phys. Rev. Lett. 121, 256401 (2018).

    Article  ADS  Google Scholar 

  25. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  26. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  Google Scholar 

  27. Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975).

    Article  ADS  Google Scholar 

  28. Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 3, 646 (2012).

    Article  ADS  Google Scholar 

  29. Hunter, N. et al. On-chip picosecond pulse detection and generation using graphene photoconductive switches. Nano Lett. 15, 1591–1596 (2015).

    Article  ADS  Google Scholar 

  30. Brenneis, A. et al. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions. Sci. Rep. 6, 35654 (2016).

    Article  ADS  Google Scholar 

  31. Karnetzky, C. et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun. 9, 2471 (2018).

    Article  ADS  Google Scholar 

  32. Yoshioka, K., Kumada, N., Muraki, K. & Hashisaka, M. On-chip coherent frequency-domain THz spectroscopy for electrical transport. Appl. Phys. Lett. 117, 161103 (2020).

    Article  ADS  Google Scholar 

  33. Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tu, N. H. et al. Active spatial control of terahertz plasmons in graphene. Commun. Mater. 1, 7 (2020).

    Article  Google Scholar 

  35. Kumada, N. et al. Suppression of gate screening on edge magnetoplasmons by highly resistive ZnO gate. Phys. Rev. B 101, 205205 (2020).

    Article  ADS  Google Scholar 

  36. Gao, Y., Tsang, H. K. & Shu, C. A silicon nitride waveguide-integrated chemical vapor deposited graphene photodetector with 38 GHz bandwidth. Nanoscale 10, 21851–21856 (2018).

    Article  Google Scholar 

  37. Song, J. C. W. & Levitov, L. S. Shockley–Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article  ADS  Google Scholar 

  38. Ma, Q. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019).

    Article  ADS  Google Scholar 

  39. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  40. Massicotte, M. et al. Dissociation of two-dimensional excitons in monolayer WSe2. Nat. Commun. 9, 1633 (2018).

    Article  ADS  Google Scholar 

  41. Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–460 (2016).

    Article  Google Scholar 

  42. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    Article  ADS  Google Scholar 

  43. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  44. Ju, L. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 9, 348–352 (2014).

    Article  ADS  Google Scholar 

  45. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  ADS  Google Scholar 

  46. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008).

    Article  ADS  Google Scholar 

  47. Jensen, S. A. et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 14, 5839–5845 (2014).

    Article  ADS  Google Scholar 

  48. Duan, J. et al. High thermoelectricpower factor in graphene/hBN devices. Proc. Natl Acad. Sci. USA 113, 14272–14276 (2016).

    Article  ADS  Google Scholar 

  49. Paul, K. K., Kim, J. & Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178–192 (2021).

    Article  Google Scholar 

  50. Chen, H. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016).

    Article  ADS  Google Scholar 

  51. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  ADS  Google Scholar 

  52. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Sasaki and K. Nozaki for fruitful discussions and H. Murofushi for technical support. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant number JPMXP0112101001) and JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

K.Y. and N.K. conceived the experiment. K.Y. designed and built the optical set-up, performed the measurements and analysed the data. K.Y. and N.K. designed the terahertz circuits with support from T.W. and M.H. The devices were fabricated by T.W. and N.K. The hBN material was contributed by K.W. and T.T. The paper was written by K.Y. and N.K., with input from all authors.

Corresponding author

Correspondence to Katsumasa Yoshioka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alexander Holleitner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Sections 1–6 and Table 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, K., Wakamura, T., Hashisaka, M. et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photon. 16, 718–723 (2022). https://doi.org/10.1038/s41566-022-01058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01058-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing