Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-walled carbon nanotubes as excitonic optical wires

Abstract

Although metallic nanostructures are useful for nanoscale optics, all of their key optical properties are determined by their geometry. This makes it difficult to adjust these properties independently, and can restrict applications. Here we use the absolute intensity of Rayleigh scattering to show that single-walled carbon nanotubes can form ideal optical wires. The spatial distribution of the radiation scattered by the nanotubes is determined by their shape, but the intensity and spectrum of the scattered radiation are determined by exciton dynamics, quantum-dot-like optical resonances and other intrinsic properties. Moreover, the nanotubes display a uniform peak optical conductivity of 8 e2/h, which we derive using an exciton model, suggesting universal behaviour similar to that observed in nanotube conductance. We further demonstrate a radiative coupling between two distant nanotubes, with potential applications in metamaterials and optical antennas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical scattering from single-walled carbon nanotubes.
Figure 2: Scattering patterns for periodically spaced nanotube segments.
Figure 3: Frequency-dependent scattering intensity and optical conductivity of single-walled carbon nanotubes.
Figure 4: Radiative coupling between distant single-walled carbon nanotubes.

Similar content being viewed by others

References

  1. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Article  Google Scholar 

  2. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    Article  CAS  Google Scholar 

  3. Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  CAS  Google Scholar 

  4. Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  CAS  Google Scholar 

  5. Alu, A. & Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon. 2, 307–310 (2008).

    Article  CAS  Google Scholar 

  6. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  CAS  Google Scholar 

  7. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  8. Slepyan, G. Y., Shuba, M. V., Maksimenko, S. A. & Lakhtakia, A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys. Rev. B 73, 195416 (2006).

    Article  Google Scholar 

  9. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  Google Scholar 

  10. Sfeir, M. et al. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306, 1540–1543 (2004).

    Article  CAS  Google Scholar 

  11. Sfeir, M. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312, 554–556 (2006).

    Article  CAS  Google Scholar 

  12. Bachilo, S. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  13. Berciaud, S. et al. Excitons and high-order optical transitions in individual carbon nanotubes: a Rayleigh scattering spectroscopy study. Phys. Rev. B 81, 041414 (2010).

    Article  Google Scholar 

  14. Dresselhaus, M., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  15. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007).

    Article  CAS  Google Scholar 

  16. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  CAS  Google Scholar 

  17. Kane, C. L. & Mele, E. J. Ratio problem in single carbon nanotube fluorescence spectroscopy. Phys. Rev. Lett. 90, 207401 (2003).

    Article  CAS  Google Scholar 

  18. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A 78, 1129–1136 (2004).

    Article  CAS  Google Scholar 

  19. Jackson, J. D. Classical Electrodynamics 3rd edn (Wiley, 1998).

    Google Scholar 

  20. Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A., Yevtushenko, O. & Gusakov, A. V. Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B 60, 17136–17149 (1999).

    Article  CAS  Google Scholar 

  21. Burke, P. J., Li, S. D. & Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotechnol. 5, 314–334 (2006).

    Article  Google Scholar 

  22. Hanson, G. W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antenn. Propag. 53, 3426–3435 (2005).

    Article  Google Scholar 

  23. Hao, J. & Hanson, G. W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotechnol. 5, 766–775 (2006).

    Article  Google Scholar 

  24. Kempa, K. et al. Carbon nanotubes as optical antennae. Adv. Mater. 19, 421–426 (2007).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 85, 2607–2609 (2004).

    Article  CAS  Google Scholar 

  26. Cubukcu, E. et al. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors. Proc. Natl Acad. Sci. USA 106, 2495–2499 (2009).

    Article  CAS  Google Scholar 

  27. Joh, D. et al. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. doi:10.1021/nl1012568 (2010).

  28. Bohren, C. & Huffman, D. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Book  Google Scholar 

  29. Abbott, T. A. & Griffiths, D. J. Acceleration without radiation. Am. J. Phys. 53, 1203–1211 (1985).

    Article  Google Scholar 

  30. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Article  Google Scholar 

  31. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  32. Manzoni, C. et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    Article  CAS  Google Scholar 

  33. Berciaud, S., Cognet, L. & Lounis, B. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys. Rev. Lett. 101, 077402 (2008).

    Article  Google Scholar 

  34. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  Google Scholar 

  35. Wang, F. et al. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401 (2006).

    Article  Google Scholar 

  36. Ju, S. Y., Kopcha, W. P. & Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009).

    Article  CAS  Google Scholar 

  37. Tan, P. H. et al. Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P.L. McEuen for useful discussions, and Y.J. Kim and R. Havener for assistance with sample fabrication and numerical modelling. This work was supported by the National Science Foundation (NSF) through the Center for Nanoscale Systems, Cornell Center for Materials Research, Center for Chemical Innovation and an NSF CAREER grant. Additional funding was received from the David and Lucile Packard Foundation, Alfred P. Sloan Foundation, Camille and Henry Dreyfus Foundation, and the US Department of Defense through the Air Force Office of Scientific Research. Sample fabrication was performed at the Cornell Nanoscale Science and Technology Facility, a National Nanotechnology Infrastructure Network node.

Author information

Authors and Affiliations

Authors

Contributions

D.J. and L.H. performed optical measurements and analysed the data. J.K. carried out theoretical calculations. S.-Y.J. and J.J. performed Raman spectroscopy measurements. M.S. carried out nanotube synthesis. G.C. and J.P. supervised the project.

Corresponding author

Correspondence to Jiwoong Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joh, D., Kinder, J., Herman, L. et al. Single-walled carbon nanotubes as excitonic optical wires. Nature Nanotech 6, 51–56 (2011). https://doi.org/10.1038/nnano.2010.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing