Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-molecule chemical reactions on DNA origami

Abstract

DNA nanotechnology1,2 and particularly DNA origami3, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures4,5,6,7,8,9,10. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged11,12,13. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally addressable solid supports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predetermined positioning of streptavidin on a DNA origami scaffold.
Figure 2: Chemical cleavage reactions on DNA origami.
Figure 3: Chemical coupling reactions on DNA origami.

Similar content being viewed by others

References

  1. Seeman, N. C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

    Article  CAS  Google Scholar 

  2. Gothelf, K. V. & LaBean, T. H. DNA-programmed assembly of nanostructures. Org. Biomol. Chem. 23, 4023–4037 (2005).

    Article  Google Scholar 

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Qian, L. et al. Analogic China map constructed by DNA. Chin. Sci. Bull. 51, 2973–2976 (2006).

    Article  CAS  Google Scholar 

  5. Andersen, E. S. et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2, 1213–1218 (2008).

    Article  CAS  Google Scholar 

  6. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  7. Ke, Y. et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9, 2445–2447 (2009).

    Article  CAS  Google Scholar 

  8. Kuzuya, A. & Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. 4182–4184 (2009).

  9. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  10. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  11. LaBean, T. & Li, H. Using DNA for construction of novel materials. Nano Today 2, 26–35 (2007).

    Article  Google Scholar 

  12. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  13. Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    Article  CAS  Google Scholar 

  14. Chhabra, R. et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305 (2007).

    Article  CAS  Google Scholar 

  15. Yan, H., Park, S. H., Finkelstein, G., Reif, J. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  Google Scholar 

  16. Lund, K., Liu, Y., Lindsay, S. & Yan, H. Self-assembling a molecular pegboard. J. Am. Chem. Soc. 127, 17606–17607 (2005).

    Article  CAS  Google Scholar 

  17. Park, S.-H. K. et al. Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem. Int. Ed. 45, 735–739 (2006).

    Article  CAS  Google Scholar 

  18. Park, S.-H. et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5, 729–733 (2005).

    Article  CAS  Google Scholar 

  19. Kuzuya, A. et al. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly. ChemBioChem 10, 1811–1815 (2009).

    Article  CAS  Google Scholar 

  20. Kuzyk, A., Laitinen, K. T. & Törmä, P. DNA origami as a nanoscale template for protein assembly. Nanotechnology 20, 235305 (2009).

    Article  Google Scholar 

  21. Baugh, S. D. P., Yang, Z., Leung, D. K., Wilson, D. M. & Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 123, 12488–12494 (2001).

    Article  CAS  Google Scholar 

  22. Rotaru, A. & Mokhir, A. Nucleic acid binders activated by light of selectable wavelength. Angew. Chem. Int. Ed. 46, 6180–6183 (2007).

    Article  CAS  Google Scholar 

  23. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  Google Scholar 

  24. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  25. Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 6, 2853–2855 (2004).

    Article  CAS  Google Scholar 

  26. van Kasteren, I. et al. Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature 446, 1105–1109 (2007).

    Article  CAS  Google Scholar 

  27. Schweitzer, C. & Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003).

    Article  CAS  Google Scholar 

  28. Gothelf, K. V. et al. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

    Article  CAS  Google Scholar 

  29. Andersen, C. S., Yan, H. & Gothelf, K. V. Bridging one helical turn in double-stranded DNA by templated dimerization of molecular rods. Angew. Chem. Int. Ed. 47, 5569–5572 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. Birkedal and T. LaBean for valuable comments regarding the manuscript. This work was supported by grants from the Danish National Research Foundation to the CDNA centre and the Danish Research Agency through support for the iNANO Center.

Author information

Authors and Affiliations

Authors

Contributions

N.V.V., T.T. and A.R. contributed equally to the design and execution of the experiments. M.F.J. and J.B.R. synthesized some of the organic compounds. R.S. and W.M. assisted in the AFM imaging. A.M. provided Linker C. J.K. and F.B. advised on the project. K.V.G. directed the project and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kurt Vesterager Gothelf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, N., Tørring, T., Rotaru, A. et al. Single-molecule chemical reactions on DNA origami. Nature Nanotech 5, 200–203 (2010). https://doi.org/10.1038/nnano.2010.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research