Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-directed placement of three-dimensional DNA origami

Abstract

The combination of lithographic methods with two-dimensional DNA origami self-assembly has led, among others, to the development of photonic crystal cavity arrays and the exploration of sensing nanoarrays where molecular devices are patterned on the sub-micrometre scale. Here we extend this concept to the third dimension by mounting three-dimensional DNA origami onto nanopatterned substrates, followed by silicification to provide hybrid DNA–silica structures exhibiting mechanical and chemical stability and achieving feature sizes in the sub-10-nm regime. Our versatile and scalable method relying on self-assembly at ambient temperatures offers the potential to three-dimensionally position any inorganic and organic components compatible with DNA origami nanoarchitecture, demonstrated here with gold nanoparticles. This way of nanotexturing could provide a route for the low-cost production of complex and three-dimensionally patterned surfaces and integrated devices designed on the molecular level and reaching macroscopic dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly of 3D hybrid DNA–silica nanostructured substrates.
Fig. 2: Assembly of 3D hybrid nanostructured substrates by on-surface annealing of DNA origami nanotubes to a flat connector origami.
Fig. 3: Pattern diversity.
Fig. 4: Assembly of 3D hybrid nanostructured substrates by direct deposition.
Fig. 5: Assembly of hybrid silica–AuNPs–DNA nanostructures prepared via nanosphere lithography.

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in ref. 50. The data supporting the findings of this study are available within this article and its Supplementary Information.

References

  1. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  2. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Google Scholar 

  3. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Google Scholar 

  4. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  Google Scholar 

  5. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Google Scholar 

  6. Wang, P. et al. Magnetic plasmon networks programmed by molecular self-assembly. Adv. Mater. 31, 1901364 (2019).

    Google Scholar 

  7. Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    CAS  Google Scholar 

  8. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Google Scholar 

  9. Kolbeck, P. J. et al. A DNA origami fiducial for accurate 3D atomic force microscopy imaging. Nano Lett. 23, 1236–1243 (2023).

    CAS  Google Scholar 

  10. Kabusure, K. M. et al. Optical characterization of DNA origami-shaped silver nanoparticles created through biotemplated lithography. Nanoscale 14, 9648–9654 (2022).

    CAS  Google Scholar 

  11. Diagne, C. T., Brun, C., Gasparutto, D., Baillin, X. & Tiron, R. DNA origami mask for sub-ten-nanometer lithography. ACS Nano 10, 6458–6463 (2016).

    CAS  Google Scholar 

  12. Surwade, S. P., Zhao, S. & Liu, H. Molecular lithography through DNA-mediated etching and masking of SiO2. J. Am. Chem. Soc. 133, 11868–11871 (2011).

    CAS  Google Scholar 

  13. Jin, Z. et al. Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nat. Commun. 4, 1663 (2013).

    Google Scholar 

  14. Shen, B. et al. Plasmonic nanostructures through DNA-assisted lithography. Sci. Adv. 4, eaap8978 (2018).

    Google Scholar 

  15. Surwade, S. P. et al. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. J. Am. Chem. Soc. 135, 6778–6781 (2013).

    CAS  Google Scholar 

  16. Shen, J., Sun, W., Liu, D., Schaus, T. & Yin, P. Three-dimensional nanolithography guided by DNA modular epitaxy. Nat. Mater. 20, 683–690 (2021).

    CAS  Google Scholar 

  17. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  Google Scholar 

  18. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2010).

    CAS  Google Scholar 

  19. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  Google Scholar 

  20. Voigt, N. V. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotechnol. 5, 200–203 (2010).

    CAS  Google Scholar 

  21. Knudsen, J. B. et al. Routing of individual polymers in designed patterns. Nat. Nanotechnol. 10, 892–898 (2015).

    CAS  Google Scholar 

  22. Hartl, C. et al. Position accuracy of gold nanoparticles on DNA origami structures studied with small-angle X-ray scattering. Nano Lett. 18, 2609–2615 (2018).

    CAS  Google Scholar 

  23. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    CAS  Google Scholar 

  24. Kershner, R. J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557–561 (2009).

    CAS  Google Scholar 

  25. Hung, A. M. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 5, 121–126 (2010).

    CAS  Google Scholar 

  26. Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016).

    CAS  Google Scholar 

  27. Gopinath, A. et al. Absolute and arbitrary orientation of single-molecule shapes. Science 371, eabd6179 (2021).

    CAS  Google Scholar 

  28. Cervantes-Salguero, K. et al. Single molecule DNA origami nanoarrays with controlled protein orientation. Biophys. Rev. 3, 031401 (2022).

    CAS  Google Scholar 

  29. Huang, D., Patel, K., Perez-Garrido, S., Marshall, J. F. & Palma, M. DNA origami nanoarrays for multivalent investigations of cancer cell spreading with nanoscale spatial resolution and single-molecule control. ACS Nano 13, 728–736 (2019).

    CAS  Google Scholar 

  30. Gopinath, A. & Rothemund, P. W. K. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. ACS Nano 8, 12030–12040 (2014).

    CAS  Google Scholar 

  31. Deckman, H. W. & Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 41, 377–379 (1982).

    CAS  Google Scholar 

  32. Shetty, R. M., Brady, S. R., Rothemund, P. W. K., Hariadi, R. F. & Gopinath, A. Bench-top fabrication of single-molecule nanoarrays by DNA origami placement. ACS Nano 15, 11441–11450 (2021).

    CAS  Google Scholar 

  33. Martynenko, I. V., Ruider, V., Dass, M., Liedl, T. & Nickels, P. C. DNA origami meets bottom-up nanopatterning. ACS Nano 15, 10769–10774 (2021).

    CAS  Google Scholar 

  34. Penzo, E., Wang, R., Palma, M. & Wind, S. J. Selective placement of DNA origami on substrates patterned by nanoimprint lithography. J. Vac. Sci. Technol. B 29, 06F205 (2011).

    Google Scholar 

  35. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS  Google Scholar 

  36. Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2011).

    Google Scholar 

  37. Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 8052 (2015).

    CAS  Google Scholar 

  38. Cao, H. H. et al. Seeding the self-assembly of DNA origamis at surfaces. ACS Nano 14, 5203–5212 (2020).

    CAS  Google Scholar 

  39. Jing, X. et al. Solidifying framework nucleic acids with silica. Nat. Protoc. 14, 2416–2436 (2019).

    CAS  Google Scholar 

  40. Wen, X. et al. 3D-printed silica with nanoscale resolution. Nat. Mater. 20, 1506–1511 (2021).

    CAS  Google Scholar 

  41. Seniutinas, G. et al. Tipping solutions: emerging 3D nano-fabrication/-imaging technologies. Nanophotonics 6, 923–941 (2017).

    Google Scholar 

  42. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    CAS  Google Scholar 

  43. Gottlieb, S. et al. Self-assembly morphology of block copolymers in sub-10 nm topographical guiding patterns. Mol. Syst. Des. Eng. 4, 175–185 (2019).

    CAS  Google Scholar 

  44. Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    Google Scholar 

  45. Wickham, S. F. J. et al. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 5768 (2020).

    CAS  Google Scholar 

  46. Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).

    Google Scholar 

  47. Shaw, A., Benson, E. & Högberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 9, 4968–4975 (2015).

    CAS  Google Scholar 

  48. Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. 53, 12735–12740 (2014).

    CAS  Google Scholar 

  49. Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2012).

    Google Scholar 

  50. Martynenko, I. et al. Site-directed placement of three-dimensional DNA origami. Dryad https://doi.org/10.5061/dryad.pg4f4qrvz and Zenodo https://doi.org/10.5281/zenodo.8119098 (2023).

Download references

Acknowledgements

We thank C. Obermayer for cleanroom assistance and S. Kempter for assistance with TEM. Besides all the group members, we thank N. Vogel (FAU Erlangen-Nürnberg) for the helpful discussions. I.V.M., G.P., X.Y. and T.L. acknowledge funding from the ERC consolidator grant ‘DNA Funs’ (Project ID: 818635). E.E., V.R. and T.L. further acknowledge support from the cluster of excellence e-conversion EXC 2089/1-390776260. This work was funded by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder through the ONE MUNICH Projects Munich Multiscale Biofabrication and Enabling Quantum Communication and Imaging Applications.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and I.V.M. designed this study; they also designed the DNA origami samples as well as designed and optimized the interfaces. I.V.M., E.E. and V.R. assembled and purified the DNA origami samples. G.P. and X.Y. designed, assembled and purified the DNA origami tetrapods and 24HBs as well as designed the tetrapod–AuNPs and tetrapod–24HB interfaces. I.V.M., E.E. and V.R. performed the placement experiments, surface annealing experiments, AFM and SEM measurements and data analysis with assistance from M.D. and P.A. I.V.M. and T.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Irina V. Martynenko or Tim Liedl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Nayan Agarwal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–44, Tables 1 and 2 and References.

Supplementary Table 1

DNA sequences in an Excel file.

Supplementary Data 1

The caDNAno origami designs in JSON files.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, I.V., Erber, E., Ruider, V. et al. Site-directed placement of three-dimensional DNA origami. Nat. Nanotechnol. 18, 1456–1462 (2023). https://doi.org/10.1038/s41565-023-01487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01487-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing