Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells

Abstract

The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nuclear envelope deforms around nanopillars, creating a non-invasive platform for studying in situ nuclear deformation.
Figure 2: Quantitative analysis of nanopillar-induced nuclear deformation.
Figure 3: Nanopillar-induced nuclear deformation shows a strong dependence on nuclear stiffness.
Figure 4: Nanopillar-induced nuclear deformation depends on the integrity of cytoskeletal components.
Figure 5: Nanopillar geometry determines the depth and shape of nuclear deformation.
Figure 6: Finite-element analysis suggests that nanopillar-induced deformation is a cumulative result of both the actin cap above the nucleus and actin accumulated around the nanopillar.

Similar content being viewed by others

References

  1. Caille, N., Thoumine, O., Tardy, Y. & Meister, J-J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    Article  Google Scholar 

  2. Khatau, S. B. et al. The distinct roles of the nucleus and nucleus–cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

    Article  Google Scholar 

  3. Lee, J. S. H. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    Article  CAS  Google Scholar 

  4. Roca-Cusachs, P. et al. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94, 4984–4995 (2008).

    Article  CAS  Google Scholar 

  5. Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    Article  CAS  Google Scholar 

  6. Taylor, M. R. et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 41, 771–780 (2003).

    Article  CAS  Google Scholar 

  7. Méjat, A. et al. Lamin A/C-mediated neuromuscular junction defects in Emery–Dreifuss muscular dystrophy. J. Cell Biol. 184, 31–44 (2009).

    Article  Google Scholar 

  8. Rowat, A. C., Lammerding, J. & Ipsen, J. H. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys. J. 91, 4649–4664 (2006).

    Article  CAS  Google Scholar 

  9. Lammerding, J. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J. Cell Biol. 170, 781–791 (2005).

    Article  CAS  Google Scholar 

  10. Hale, C. M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).

    Article  CAS  Google Scholar 

  11. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004).

    Article  CAS  Google Scholar 

  12. Yang, S. H. et al. Eliminating the synthesis of mature lamin A reduces disease phenotypes in mice carrying a Hutchinson–Gilford progeria syndrome allele. J. Biol. Chem. 283, 7094–7099 (2008).

    Article  CAS  Google Scholar 

  13. Ivanovska, I., Swift, J., Harada, T., Pajerowski, J. D. & Discher, D. E. Physical plasticity of the nucleus and its manipulation. Methods Cell Biol. 98, 207–220 (2010).

    Article  Google Scholar 

  14. Guilak, F., Tedrow, J. R. & Burgkart, R. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781–786 (2000).

    Article  CAS  Google Scholar 

  15. Dahl, K. N., Engler, A. J., Pajerowski, J. D. & Discher, D. E. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89, 2855–2864 (2005).

    Article  CAS  Google Scholar 

  16. Lombardi, M. L. & Lammerding, J. Altered mechanical properties of the nucleus in disease. Methods Cell Biol. 98, 121–141 (2010).

    Article  Google Scholar 

  17. Lammerding, J. & Lee, R. T. Mechanical properties of interphase nuclei probed by cellular strain application. Methods Mol. Biol. 464, 13–26 (2009).

    Article  Google Scholar 

  18. Davidson, P. M., Özçelik, H., Hasirci, V., Reiter, G. & Anselme, K. Microstructured surfaces cause severe but non-detrimental deformation of the cell nucleus. Adv. Mater. 21, 3586–3590 (2009).

    Article  CAS  Google Scholar 

  19. Badique, F. et al. Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials 34, 2991–3001 (2013).

    Article  CAS  Google Scholar 

  20. Pan, Z. et al. Control of cell nucleus shapes via micropillar patterns. Biomaterials 33, 1730–1735 (2012).

    Article  CAS  Google Scholar 

  21. Versaevel, M., Grevesse, T. & Gabriele, S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nature Commun. 3, 671 (2012).

    Article  Google Scholar 

  22. Fu, Y., Chin, L. K., Bourouina, T., Liu, A. Q. & VanDongen, A. M. J. Nuclear deformation during breast cancer cell transmigration. Lab Chip 12, 3774–3778 (2012).

    Article  CAS  Google Scholar 

  23. Wolf, K. & Friedl, P. Mapping proteolytic cancer cell–extracellular matrix interfaces. Clin. Exp. Metastasis 26, 289–298 (2009).

    Article  CAS  Google Scholar 

  24. Fidziañska, A., Walczak, E., Glinka, Z. & Religa, G. Nuclear architecture remodelling in cardiomyocytes with lamin A deficiency. Folia Neuropathologica 46, 196–203 (2008).

    Google Scholar 

  25. Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).

    Article  CAS  Google Scholar 

  26. Hanson, L., Lin, Z. C., Xie, C., Cui, Y. & Cui, B. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 12, 5815–5820 (2012).

    Article  CAS  Google Scholar 

  27. Bucaro, M. A., Vasquez, Y., Hatton, B. D. & Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6, 6222–6230 (2012).

    Article  CAS  Google Scholar 

  28. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  Google Scholar 

  29. Curtis, A. S. G., Dalby, M. J. & Gadegaard, N. Nanoprinting onto cells. J. R. Soc. Interface 3, 393–398 (2006).

    Article  CAS  Google Scholar 

  30. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nature Nanotech. 7, 185–190 (2012).

    Article  CAS  Google Scholar 

  31. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotech. 7, 180–184 (2012).

    Article  CAS  Google Scholar 

  32. Xie, C., Hanson, L., Cui, Y. & Cui, B. Vertical nanopillars for highly localized fluorescence imaging. Proc. Natl Acad. Sci. USA 108, 3894–3899 (2011).

    Article  CAS  Google Scholar 

  33. Ostlund, C. et al. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J. Cell Sci. 122, 4099–4108 (2009).

    Article  CAS  Google Scholar 

  34. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  35. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  Google Scholar 

  36. McClintock, D., Gordon, L. B. & Djabali, K. Hutchinson–Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-lamin A G608G antibody. Proc. Natl Acad. Sci. USA 103, 2154–2159 (2006).

    Article  CAS  Google Scholar 

  37. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  Google Scholar 

  38. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  Google Scholar 

  39. Cao, H. & Hegele, R. A. LMNA is mutated in Hutchinson–Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J. Hum. Genet. 48, 271–274 (2003).

    Article  CAS  Google Scholar 

  40. Dahl, K. N. et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 10271–10276 (2006).

    Article  CAS  Google Scholar 

  41. Booth-Gauthier, E. A. et al. Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. 5, 569–577 (2013).

    Article  CAS  Google Scholar 

  42. Claycomb, W. C. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).

    Article  CAS  Google Scholar 

  43. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  44. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  Google Scholar 

  45. Stamenović, D., Mijailovich, S. M., Tolić-Nørrelykke, I. M., Chen, J. & Wang, N. Cell prestress. II. Contribution of microtubules. Am. J. Physiol. Cell Physiol. 282, C617–C624 (2002).

    Article  Google Scholar 

  46. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  Google Scholar 

  47. Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    Article  CAS  Google Scholar 

  48. Wang, N. & Stamenovic, D. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279, C188–C194 (2000).

    Article  CAS  Google Scholar 

  49. Vaziri, A., Lee, H. & Mofrad, M. R. K. Deformation of the cell nucleus under indentation: mechanics and mechanisms. J. Mater. Res. 21, 2126–2135 (2006).

    Article  CAS  Google Scholar 

  50. Kim, D-H. et al. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2, 555 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (award no. 1055112 and 1344302), the National Institutes of Health (grant no. DP2NS082125), a Searle Scholar award, a Packard Science and Engineering Fellowship (to B.C.) and a National Defense Science and Engineering Graduate Fellowship (to Z.L.). The authors thank H. Worman at Columbia University for providing the GFP-Sun2 plasmid. The authors thank M. Lin at Stanford University for helping with the confocol microscope.

Author information

Authors and Affiliations

Authors

Contributions

L.H., B.C. and Y.C. designed experiments. L.H., W.Z., H.L. and Z.L. carried out the experiments. L.H. and S.W.L. designed and carried out the simulations. L.H. and P.C. designed and carried out the data analysis. All authors contributed to scientific planning, discussions and writing of the manuscript.

Corresponding authors

Correspondence to Yi Cui or Bianxiao Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1746 kb)

Supplementary information

Supplementary Movie 1 (AVI 324 kb)

Supplementary information

Supplementary Movie 2 (AVI 140 kb)

Supplementary information

Supplementary Movie 3 (AVI 2818 kb)

Supplementary information

Supplementary Movie 4 (AVI 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, L., Zhao, W., Lou, HY. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nature Nanotech 10, 554–562 (2015). https://doi.org/10.1038/nnano.2015.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing