Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

Abstract

The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10−9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10−11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relaxed experimental conditions of magnetic flux density B, temperature T and measurement current I ensuring Hall resistance quantization with 1 × 10−9 accuracy in the device made of CVD graphene on SiC.
Figure 2: Hall device, graphene characterizations and magnetotransport characteristics.
Figure 3: High-precision measurements of the Hall and longitudinal resistance along the h/(2e2) plateau in the device made of CVD graphene on SiC.
Figure 4: Extended range of experimental conditions of magnetic flux density B, temperature T and current I ensuring Hall resistance quantization with 1 × 10−9 accuracy in the device made of CVD graphene on SiC.
Figure 5: QHE universality test.

Similar content being viewed by others

References

  1. Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  Google Scholar 

  2. Mills, I. M., Mohr, P. J., Quinn, T. J., Taylor, B. N. & Williams, E. R. Adapting the International System of Units to the twenty-first century. Phil. Trans. R. Soc. A 369, 3907–3924 (2011).

    Article  CAS  Google Scholar 

  3. Milton, M. J. T., Davis, R. & Fletcher, N. Towards a new SI: a review of progress made since 2011. Metrologia 51, R21–R30 (2014).

    Article  Google Scholar 

  4. Kibble, B. P. in Atomic Masses and Fundamental Constants Vol. 5 (eds Sanders, J. H. & Wapstra, A. H.) 545–551 (New York, 1976).

    Book  Google Scholar 

  5. JCGM 200:2012 (E/F) International vocabulary of metrology—Basic and general concepts and associated terms (VIM), 3rd edn (JCGM, 2012).

  6. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632 (1981).

    Article  Google Scholar 

  7. Niu, Q., Thouless, D. J. & Wu, Y. Quantized Hall conductance as a topological invariant. Phys. Rev. B 31, 3372 (1985).

    Article  CAS  Google Scholar 

  8. Thouless, D. J. Topological interpretations of quantum Hall conductance. J. Math. Phys. 35, 5362 (1994).

    Article  Google Scholar 

  9. Penin, A. A. Quantum Hall effect in quantum electrodynamics. Phys. Rev. B 79, 113303 (2009).

    Article  Google Scholar 

  10. Mohr, P. J., Taylor, B. N. & Newell, D. B. CODATA recommended values of the fundamental physical constants 2010. Rev. Mod. Phys. 84, 1527 (2012).

    Article  CAS  Google Scholar 

  11. Poirier, W. & Schopfer, F. Resistance metrology based on the quantum Hall effect. Eur. Phys. J. Spec. Top. 172, 207–245 (2009).

    Article  Google Scholar 

  12. Schopfer, F. & Poirier, W. Quantum resistance standard accuracy close to the zero-dissipation state. J. Appl. Phys. 114, 064508 (2013).

    Article  Google Scholar 

  13. Delahaye, F. & Jeckelmann, B. Revised technical guidelines for reliable dc measurements of the quantized Hall resistance. Metrologia 40, 217 (2003).

    Article  CAS  Google Scholar 

  14. Kalmbach, C.-C. et al. Towards a graphene-based quantum impedance standard. Appl. Phys. Lett. 105, 073511 (2014).

    Article  Google Scholar 

  15. Poirier, W., Lafont, F., Djordjevic, S., Schopfer, F. & Devoille, L. A programmable quantum current standard from the Josephson and the quantum Hall effects. J. Appl. Phys. 115, 044509 (2014).

    Article  Google Scholar 

  16. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  17. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  18. Giesbers, A. J. M. et al. Quantum resistance metrology in graphene. Appl. Phys. Lett. 93, 222109 (2008).

    Article  Google Scholar 

  19. Guignard, J., Leprat, D., Glattli, D. C., Schopfer, F. & Poirier, W. Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements. Phys. Rev. B 85, 165420 (2012).

    Article  Google Scholar 

  20. Woszczyna, M. et al. Precision quantization of Hall resistance in transferred graphene. Appl. Phys. Lett. 100, 164106 (2012).

    Article  Google Scholar 

  21. Satrapinski, A., Novikov, S. & Lebedeva, N. Precision quantum Hall resistance measurement on epitaxial graphene device in low magnetic field. Appl. Phys. Lett. 103, 173509 (2013).

    Article  Google Scholar 

  22. Lafont, F. et al. Anomalous dissipation mechanism and Hall quantization limit in polycrystalline graphene grown by chemical vapor deposition. Phys. Rev. B 90, 115422 (2014).

    Article  Google Scholar 

  23. Shen, T. et al. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films. Appl. Phys. Lett. 99, 232110 (2011).

    Article  Google Scholar 

  24. Schopfer, F. & Poirier, W. Graphene-based quantum Hall effect metrology. MRS Bull. 37, 1255–1264 (2012).

    Article  CAS  Google Scholar 

  25. Jeckelmann, B., Jeanneret, B. & Inglis, D. High-precision measurements of the quantized Hall resistance: experimental conditions for universality. Phys. Rev. B 55, 13124 (1997).

    Article  CAS  Google Scholar 

  26. Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotech. 5, 186–189 (2010).

    Article  CAS  Google Scholar 

  27. Janssen, T. J. B. M. et al. Graphene, universality of the quantum Hall effect and redefinition of the SI system. New J. Phys. 13, 093026 (2011).

    Article  Google Scholar 

  28. Janssen, T. J. B. M. et al. Precision comparison of the quantum Hall effect in graphene and gallium arsenide. Metrologia 49, 294–306 (2012).

    Article  CAS  Google Scholar 

  29. Michon, A. et al. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Appl. Phys. Lett. 97, 171909 (2010).

    Article  Google Scholar 

  30. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 3012, 1191 (2006).

    Article  Google Scholar 

  31. Michon, A. et al. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane–hydrogen chemical vapor deposition. J. Appl. Phys. 113, 203501 (2013).

    Article  Google Scholar 

  32. Altshuler, B. L. & Aronov, A. G. Electron–Electron Interactions in Disordered Conductors (Elsevier, 1985).

    Book  Google Scholar 

  33. Piquemal, F. et al. Report on a joint BIPM-EUROMET project for the fabrication of QHE samples by the LEP. IEEE Trans. Instrum. Meas. 42, 264–268 (1993).

    Article  Google Scholar 

  34. Janssen, T. J. B. M. et al. Anomalously strong pinning of the filling factor ν = 2 in epitaxial graphene. Phys. Rev. B 83, 233402 (2011).

    Article  Google Scholar 

  35. Lafont, F. et al. Quantum Hall resistance standard based on graphene grown by chemical vapor deposition on silicon carbide. Nature Commun. 6, 6806 (2015).

    Article  CAS  Google Scholar 

  36. Bloch, F., Cugat, O., Meunier, G. & Toussaint, J. C. Innovating approaches to the generation of intense magnetic fields: design and optimization of a 4 tesla permanent magnet flux source. IEEE Trans. Magn. 34, 2465–2468 (1998).

    Article  CAS  Google Scholar 

  37. Radebaugh, R. Cryocoolers: the state of the art and recent developments. J. Phys. Condens. Matter 21, 164219 (2009).

    Article  Google Scholar 

  38. Allan, D. W. Should the classical variance be used as a basic measure in standards metrology? IEEE Trans. Instrum. Meas. 36, 646–654 (1987).

    Article  Google Scholar 

  39. Hartland, A., Jones, K., Williams, J. M., Gallagher, B. L. & Galloway, T. Direct comparison of the quantized Hall resistance in gallium arsenide and silicon. Phys. Rev. Lett. 66, 969–973 (1991).

    Article  CAS  Google Scholar 

  40. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  41. Michon, A. et al. X-ray diffraction and Raman spectroscopy study of strain in graphene films grown on 6H-SiC(0001) using propane–hydrogen–argon CVD. Mater. Sci. Forum 740–742, 117–120 (2013).

    Article  Google Scholar 

  42. Lara-Avila, S. et al. Non-volatile photochemical gating of an epitaxial graphene/polymer heterostructure. Adv. Mater. 23, 878–882 (2011).

    Article  CAS  Google Scholar 

  43. Jabakhanji, B. et al. Tuning the transport properties of graphene films grown by CVD on SiC(0001): effect of in situ hydrogenation and annealing. Phys. Rev. B 89, 085422 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Berger (GeorgiaTech), S. Borini (Nokia Research Center), D. Estève (CEA), D.C. Glattli (CEA), P. Gournay (BIPM), M. Keller (NIST) and K. von Klitzing (Max Planck Institute) for discussions, and S. Ducourtieux (LNE), D. Leprat (LNE), D. Mailly (LPN), M. Portail (CRHEA), T. Chassagne (NovaSiC) and M. Zielinski (NovaSiC) for technical support. This research received funding from the French Agence Nationale de la Recherche (grant no. ANR-2011-NANO-004), and was partly supported within the European Metrology Research Programme (EMRP) project SIB51, GraphOhm. The EMRP is jointly funded by the EMRP participating countries within the European Association of National Metrology Institutes (EURAMET) and the European Union.

Author information

Authors and Affiliations

Authors

Contributions

F.S., R.R.-P. and W.P. planned the experiments. A.M. fabricated the graphene layers. F.C. and A.M. performed structural characterization of the graphene layers. D.K. fabricated the Hall bar devices. R.R-P., F.S., J.B.-P., W.P. and F.L. conducted the electrical metrological measurements. O.C., C.C., B.J. and D.K. carried out complementary electrical measurements. R.R-P., F.S. and W.P. analysed the data. F.S., R.R.-P., W.P., A.M., B.J., D.K. and J.B.-P. wrote the paper.

Corresponding author

Correspondence to F. Schopfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro-Palau, R., Lafont, F., Brun-Picard, J. et al. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. Nature Nanotech 10, 965–971 (2015). https://doi.org/10.1038/nnano.2015.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing