Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams

Abstract

Conventional Fourier-transform infrared (FTIR) microspectroscopic systems are limited by an inevitable trade-off between spatial resolution, acquisition time, signal-to-noise ratio (SNR) and sample coverage. We present an FTIR imaging approach that substantially extends current capabilities by combining multiple synchrotron beams with wide-field detection. This advance allows truly diffraction-limited high-resolution imaging over the entire mid-infrared spectrum with high chemical sensitivity and fast acquisition speed while maintaining high-quality SNR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FTIR imaging with a multibeam synchrotron source.
Figure 2: Chemical images from various FTIR systems.
Figure 3: High-resolution multibeam synchrotron FTIR imaging.

Similar content being viewed by others

References

  1. Wetzel, D.L. & LeVine, S.M. Science 285, 1224–1225 (1999).

    Article  CAS  Google Scholar 

  2. Pezacki, J.P. et al. Nat. Chem. Biol. 7, 137–145 (2011).

    Article  CAS  Google Scholar 

  3. Chalmers, J.M. & Griffiths, P.R. Handbook of Vibrational Spectroscopy (Wiley, 2002).

  4. Stelzer, E.H.K. J. Microsc. 189, 15–24 (1998).

    Article  Google Scholar 

  5. Lasch, P. & Naumann, D. Biochim. Biophys. Acta 1758, 814–829 (2006).

    Article  CAS  Google Scholar 

  6. Carr, G.L. Rev. Sci. Instrum. 72, 1613–1619 (2001).

    Article  CAS  Google Scholar 

  7. Dumas, P., Jamin, N., Teillaud, J.L., Miller, L.M. & Beccard, B. Faraday Discuss. 126, 289–302 (2004).

    Article  CAS  Google Scholar 

  8. Bhargava, R. & Levin, I.W. Anal. Chem. 73, 5157–5167 (2001).

    Article  CAS  Google Scholar 

  9. Lewis, E.N. et al. Anal. Chem. 67, 3377–3381 (1995).

    Article  CAS  Google Scholar 

  10. Kidder, L.H., Levin, I.W., Lewis, E.N., Kleiman, V.D. & Heilweil, E.J. Opt. Lett. 22, 742–744 (1997).

    Article  CAS  Google Scholar 

  11. Moss, D., Gasharova, B. & Mathis, Y. Infrared Phys. Technol. 49, 53–56 (2006).

    Article  CAS  Google Scholar 

  12. Carr, G.L., Chubar, O. & Dumas, P. in Spectrochemical Analysis Using Infrared Multichannel Detectors 1st edn. (eds., Bhargava, R. & Levin, I.W.) 56–84 (Wiley-Blackwell, Oxford, 2005).

  13. Miller, L.M. & Dumas, P. Biochim. Biophys. Acta 1758, 846–857 (2006).

    Article  CAS  Google Scholar 

  14. Petibois, C., Cestelli-Guidi, M., Piccinini, M., Moenner, M. & Marcelli, A. Anal. Bioanal. Chem. 397, 2123–2129 (2010).

    Article  CAS  Google Scholar 

  15. Fernandez, D.C., Bhargava, R., Hewitt, S.M. & Levin, I.W. Nat. Biotechnol. 23, 469–474 (2005).

    Article  CAS  Google Scholar 

  16. Bhargava, R., Schwartz Perlman, R., Fernandez, D.C., Levin, I.W. & Bartick, E.G. Anal. Bioanal. Chem. 394, 2069–2075 (2009).

    Article  CAS  Google Scholar 

  17. Li, Z.Q. et al. Nat. Phys. 4, 532–535 (2008).

    Article  CAS  Google Scholar 

  18. Bunaciu, A.A., Aboul-Enein, H.Y. & Fleschin, S. Appl. Spectrosc. Rev. 45, 206–219 (2010).

    Article  Google Scholar 

  19. Matveev, S. & Stachel, T. Geochim. Cosmochim. Acta 71, 5528–5543 (2007).

    Article  CAS  Google Scholar 

  20. Prati, S., Joseph, E., Sciutto, G. & Mazzeo, R. Acc. Chem. Res. 43, 792–801 (2010).

    Article  CAS  Google Scholar 

  21. Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. Science 306, 1161–1164 (2004).

    Article  CAS  Google Scholar 

  22. Martin, F.L. et al. Nat. Protoc. 5, 1748–1760 (2010).

    Article  CAS  Google Scholar 

  23. Hazen, T.C. et al. Science 330, 204–208 (2010).

    Article  CAS  Google Scholar 

  24. Walsh, M.J. et al. Stem Cells 26, 108–118 (2008).

    Article  CAS  Google Scholar 

  25. Walsh, M.J. et al. Stem Cell Res. 3, 15–27 (2009).

    Article  CAS  Google Scholar 

  26. Holman, H.N., Bechtel, H.A., Hao, Z. & Martin, M.C. Anal. Chem. 82, 8757–8765 (2010).

    Article  CAS  Google Scholar 

  27. Kuzyk, A. et al. J. Biol. Chem. 285, 31202–31207 (2010).

    Article  CAS  Google Scholar 

  28. Webster, G.T. et al. Anal. Chem. 81, 2516–2524 (2009).

    Article  CAS  Google Scholar 

  29. Bhargava, R. Anal. Bioanal. Chem. 389, 1155–1169 (2007).

    Article  CAS  Google Scholar 

  30. Centonze, V. & Pawley, J.B. in Handbook of Biological Confocal Microscopy 3rd edn. (ed. Pawley, J.B.) 627–649 (Springer, New York, 2006).

  31. Murphy, D.B. Fundamentals of Light Microscopy and Electronic Imaging 1st edn. 233–258 (Wiley-Liss, New York, 2001).

  32. Bobroff, N. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  Google Scholar 

  33. Reffner, J.A., Martoglio, P.A. & Williams, G.P. Rev. Sci. Instrum. 66, 1298–1302 (1995).

    Article  CAS  Google Scholar 

  34. Nasse, M.J., Reininger, R., Kubala, T., Janowski, S. & Hirschmugl, C. Nucl. Instrum. Methods Phys. Res. A 582, 107–110 (2007).

    Article  CAS  Google Scholar 

  35. Park, K., Lee, J., Bhargava, R. & King, W.P. Anal. Chem. 80, 3221–3228 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kubala, S. Janowski and M. Fisher for their engineering work, and Z. El-Bayyari for his help during alignment of the beamline. This work was supported by the US National Science Foundation under awards CHE-0832298, CHE-0957849 and DMR-0619759, and by the Research Growth Initiative of the University of Wisconsin–Milwaukee. Part of this work is based on research conducted at the Synchrotron Radiation Center, University of Wisconsin–Madison, which is supported by the National Science Foundation under award DMR-0537588. The project described was also supported by award R01CA138882 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.J.N., R.R. and C.J.H. designed research; M.J.N., M.J.W. and E.C.M. performed research; M.J.W., A.K.-B., V.M. and R.B. contributed prostate samples; M.J.N., M.J.W., E.C.M., R.B. and C.J.H. analyzed data; and M.J.N., R.B. and C.J.H. wrote the paper.

Corresponding authors

Correspondence to Rohit Bhargava or Carol J Hirschmugl.

Ethics declarations

Competing interests

R.R. is an employee of Scientific Answers & Solutions and has received compensation for his scientific consultation related to this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Notes 1–3 (PDF 2100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasse, M., Walsh, M., Mattson, E. et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8, 413–416 (2011). https://doi.org/10.1038/nmeth.1585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing