Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes

Abstract

We developed an automated system, ScanLag, that measures in parallel the delay in growth (lag time) and growth rate of thousands of cells. Using ScanLag, we detected small subpopulations of bacteria with dramatically increased lag time upon starvation. By screening a library of Escherichia coli deletion mutants, we achieved two-dimensional mapping of growth characteristics, which showed that ScanLag enables multidimensional screens for quantitative characterization and identification of rare phenotypic variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lag time and growth rate distribution measurements using ScanLag.
Figure 2: Two-dimensional mapping of the E. coli library of long deletions using ScanLag.

Similar content being viewed by others

References

  1. Collins, S.R., Weissman, J.S. & Krogan, N.J. Nat. Methods 6, 721–723 (2009).

    Article  CAS  Google Scholar 

  2. Bochner, B.R. FEMS Microbiol. Rev. 33, 191–205 (2009).

    Article  CAS  Google Scholar 

  3. Elfwing, A., LeMarc, Y., Baranyi, J. & Ballagi, A. Appl. Environ. Microbiol. 70, 675–678 (2004).

    Article  CAS  Google Scholar 

  4. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Science 305, 1622–1625 (2004).

    Article  CAS  Google Scholar 

  5. Guillier, L., Pardon, P. & Augustin, J.C. Appl. Environ. Microbiol. 71, 2940–2948 (2005).

    Article  CAS  Google Scholar 

  6. Glaser, D.A. & Wattenburg, W.H. Ann. NY Acad. Sci. 139, 243–257 (1966).

    Article  CAS  Google Scholar 

  7. Michel, J.B., Yeh, P.J., Chait, R., Moellering, R.C. & Kishony, R. Proc. Natl. Acad. Sci. USA 105, 14918–14923 (2008).

    Article  CAS  Google Scholar 

  8. Barkai, N. & Shilo, B.Z. Mol. Cell 28, 755–760 (2007).

    Article  CAS  Google Scholar 

  9. Dubnau, D. & Losick, R. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  Google Scholar 

  10. Bigger, J.W. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  11. Hershey, A.D. J. Bacteriol. 37, 285–299 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pin, C. & Baranyi, J. Appl. Environ. Microbiol. 74, 2534–2536 (2008).

    Article  CAS  Google Scholar 

  13. Niven, G.W., Morton, J.S., Fuks, T. & Mackey, B.A. Appl. Environ. Microbiol. 74, 3757–3763 (2008).

    Article  CAS  Google Scholar 

  14. Kato, J. & Hashimoto, M. Mol. Syst. Biol. 3, 132 (2007).

    Article  Google Scholar 

  15. Kaprelyants, A.S. et al. Intercellular Signalling and the Multiplication of Prokaryotes: Bacterial Cytokines (Cambridge University Press, 1999).

  16. Lutz, R. & Bujard, H. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  17. Gefen, O., Gabay, C., Mumcuoglu, M., Engel, G. & Balaban, N.Q. Proc. Natl. Acad. Sci. USA 105, 6145–6149 (2008).

    Article  CAS  Google Scholar 

  18. Hurley, M.A. & Roscoe, M.E. J. Appl. Bacteriol. 55, 159–164 (1983).

    Article  Google Scholar 

  19. Cochran, W.G. Biometrics 6, 105–116 (1950).

    Article  CAS  Google Scholar 

  20. Quake, S.R. & Scherer, A. Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Keynan for invaluable discussions on the importance of the lag phase, D. Azulay and A. Bar-Yaacov for helpful theoretical discussions, I. Rosenshine (Hebrew University) for strains, and the National BioResource Project and National Institute of Genetics, Japan for the large and medium deletion mutants library, S. Silbert for initial software development and E. Rotem and S. Pearl for technical support and comments on the manuscript. The work was supported by the Human Frontier Science Program and by the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

I.L.-R., O.G., I.R. and D.S. performed the research. O.F. and H.S. contributed analytical tools. N.Q.B., I.L.-R., I.R. and O.G. designed the research. N.Q.B. wrote the paper.

Corresponding author

Correspondence to Nathalie Q Balaban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Data (PDF 383 kb)

Supplementary Video 1

A typical analysis process using ScanLag. Shown are analyses of overnight culture (left) and culture starved for 3 d (right). Colony appearance was automatically detected as soon as colonies reached a threshold size. Each colony was assigned an identifying number and an arbitrary color. The lower panels show the resulting distribution, for each plate, represented as 1-CDF (cumulative distribution function), which represents the fraction of the colonies that have not yet appeared. At the beginning of the movie, no colony has appeared yet, namely that fraction is 1, whereas at the end of the movie it is zero. (MOV 2108 kb)

Supplementary Software 1

ScanningManager software application controlling image acquisition by an array of scanners. (ZIP 534 kb)

Supplementary Software 2

TimeLapse analysis software application (Matlab) for the analysis of images and extraction of colony appearance data. (ZIP 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin-Reisman, I., Gefen, O., Fridman, O. et al. Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods 7, 737–739 (2010). https://doi.org/10.1038/nmeth.1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1485

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology