Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrative, dynamic structural biology at atomic resolution—it's about time

Abstract

Biomolecules adopt a dynamic ensemble of conformations, each with the potential to interact with binding partners or perform the chemical reactions required for a multitude of cellular functions. Recent advances in X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and other techniques are helping us realize the dream of seeing—in atomic detail—how different parts of biomolecules shift between functional substates using concerted motions. Integrative structural biology has advanced our understanding of the formation of large macromolecular complexes and how their components interact in assemblies by leveraging data from many low-resolution methods. Here, we review the growing opportunities for integrative, dynamic structural biology at the atomic scale, contending there is increasing synergistic potential between X-ray crystallography, NMR and computer simulations to reveal a structural basis for protein conformational dynamics at high resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein dynamics across temporal (x-axis) and spatial (y-axis) scales.
Figure 2: NMR experiments report on motions across different timescales.
Figure 3: Examples of synergistic insights from NMR and X-ray crystallography.
Figure 4: At physiological temperatures, crystalline environments mildly affect biomolecular motions.
Figure 5: Cryo-cooling of protein crystals irregularly selects conformational substates.
Figure 6: In X-ray crystallography, resolution and model selection interact to affect the interpretation of conformational heterogeneity.
Figure 7: Networks of conformational exchange are evolution's engines.
Figure 8: Illustration of serial femtosecond crystallography.

Similar content being viewed by others

References

  1. Boehr, D.D., McElheny, D., Dyson, H.J. & Wright, P.E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006). CPMG relaxation dispersion experiments characterize the structural dynamics of the catalytic cycle of DHFR as a sequence of ‘linked’ ground and excited states.

    Article  CAS  PubMed  Google Scholar 

  2. Henzler-Wildman, K.A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Fleishman, S.J. et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332, 816–821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whitehead, T.A. et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat. Biotechnol. 30, 543–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linder, M., Johansson, A.J., Olsson, T.S.G., Liebeschuetz, J. & Brinck, T. Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics. J. Comput. Aided Mol. Des. 26, 1079–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Volkov, A.N., Worrall, J.A.R., Holtzmann, E. & Ubbink, M. Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc. Natl. Acad. Sci. USA 103, 18945–18950 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, C., Iwahara, J. & Clore, G.M. Visualization of transient encounter complexes in protein-protein association. Nature 444, 383–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Privett, H.K. et al. Iterative approach to computational enzyme design. Proc. Natl. Acad. Sci. USA 109, 3790–3795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ward, A.B., Sali, A. & Wilson, I.A. Integrative structural biology. Science 339, 913–915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van den Bedem, H., Bhabha, G., Yang, K., Wright, P.E. & Fraser, J.S. Automated identification of functional dynamic contact networks from X-ray crystallography. Nat. Methods 10, 896–902 (2013). This study identifies networks of coordinated motion directly from room-temperature X-ray crystallography data, which rationalize NMR data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tokuriki, N. & Tawfik, D.S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McLaughlin, R.N. Jr., Poelwijk, F.J., Raman, A., Gosal, W.S. & Ranganathan, R. The spatial architecture of protein function and adaptation. Nature 491, 138–142 (2012). This study identifies functional networks of coevolving amino acids from statistical coupling analysis, rationalized by deep mutational scanning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhabha, G. et al. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat. Struct. Mol. Biol. 20, 1243–1249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Williamson, M.P., Havel, T.F. & Wüthrich, K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, 1986).

  17. Torda, A.E., Scheek, R.M. & van Gunsteren, W.F. Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214, 223–235 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Bonvin, A.M.J.J. & Brünger, A.T. Do NOE distances contain enough information to assess the relative populations of multi-conformer structures? J. Biomol. NMR 7, 72–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science 309, 303–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Vögeli, B., Kazemi, S., Güntert, P. & Riek, R. Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat. Struct. Mol. Biol. 19, 1053–1057 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Shen, Y. et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sripakdeevong, P. et al. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat. Methods 11, 413–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camilloni, C. & Vendruscolo, M. Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. J. Am. Chem. Soc. 136, 8982–8991 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Fraser, J.S. et al. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462, 669–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fraser, J.S. et al. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl. Acad. Sci. USA 108, 16247–16252 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hansen, D.F., Vallurupalli, P. & Kay, L.E. Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J. Biomol. NMR 41, 113–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Long, D. et al. A comparative CEST NMR study of slow conformational dynamics of small GTPases complexed with GTP and GTP analogues. Angew. Chem. Int. Ed. Engl. 52, 10771–10774 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McElheny, D., Schnell, J.R., Lansing, J.C., Dyson, H.J. & Wright, P.E. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proc. Natl. Acad. Sci. USA 102, 5032–5037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morcos, F. et al. Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput. Biol. 6, e1001015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. NMR evidence for slow collective motions in cyanometmyoglobin. Nat. Struct. Biol. 4, 292–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Zeng, J. et al. High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. J. Biomol. NMR 45, 265–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clore, G.M. & Schwieters, C.D. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J. Am. Chem. Soc. 126, 2923–2938 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Cavalli, A., Camilloni, C. & Vendruscolo, M. Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J. Chem. Phys. 138, 094112 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. De Simone, A., Montalvao, R.W., Dobson, C.M. & Vendruscolo, M. Characterization of the interdomain motions in hen lysozyme using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. Biochemistry 52, 6480–6486 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Salmon, L., Bascom, G., Andricioaei, I. & Al-Hashimi, H.M. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J. Am. Chem. Soc. 135, 5457–5466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Emani, P.S. et al. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles. J. Phys. Chem. B 118, 1726–1742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guerry, P. et al. Mapping the population of protein conformational energy sub-states from NMR dipolar couplings. Angew. Chem. Int. Ed. Engl. 52, 3181–3185 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Fonseca, R., Pachov, D.V., Bernauer, J. & van den Bedem, H. Characterizing RNA ensembles from NMR data with kinematic models. Nucleic Acids Res. 42, 9562–9572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berlin, K. et al. Recovering a representative conformational ensemble from underdetermined macromolecular structural data. J. Am. Chem. Soc. 135, 16595–16609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lange, O.F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–1475 (2008). A comprehensive, integrative computational procedure reveals the conformational ensemble of ubiquition, validated by comparative crystal structure analysis.

    Article  CAS  PubMed  Google Scholar 

  43. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  44. Frederick, K.K., Marlow, M.S., Valentine, K.G. & Wand, A.J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007). This study establishes a linear relationship between conformational entropy and binding entropy for calmodulin. Ref. 45 then proposes S2axis as a proxy for binding entropy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kasinath, V., Sharp, K.A. & Wand, A.J. Microscopic insights into the NMR relaxation-based protein conformational entropy meter. J. Am. Chem. Soc. 135, 15092–15100 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Tzeng, S.-R. & Kalodimos, C.G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Diehl, C. et al. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc. 132, 14577–14589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Best, R.B. & Vendruscolo, M. Determination of protein structures consistent with NMR order parameters. J. Am. Chem. Soc. 126, 8090–8091 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Maragakis, P. et al. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B 112, 6155–6158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Showalter, S.A., Johnson, E., Rance, M. & Brüschweiler, R. Toward quantitative interpretation of methyl side-chain dynamics from NMR by molecular dynamics simulations. J. Am. Chem. Soc. 129, 14146–14147 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Scouras, A.D. & Daggett, V. The Dynameomics rotamer library: amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Protein Sci. 20, 341–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lindorff-Larsen, K., Best, R.B., Depristo, M.A., Dobson, C.M. & Vendruscolo, M. Simultaneous determination of protein structure and dynamics. Nature 433, 128–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Shehu, A., Clementi, C. & Kavraki, L.E. Modeling protein conformational ensembles: from missing loops to equilibrium fluctuations. Proteins 65, 164–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Shehu, A., Kavraki, L.E. & Clementi, C. On the characterization of protein native state ensembles. Biophys. J. 92, 1503–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Best, R.B., Lindorff-Larsen, K., DePristo, M.A. & Vendruscolo, M. Relation between native ensembles and experimental structures of proteins. Proc. Natl. Acad. Sci. USA 103, 10901–10906 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper, A. & Dryden, D.T.F. Allostery without conformational change. A plausible model. Eur. Biophys. J. 11, 103–109 (1984). A landmark study proposing that entropic changes can drive binding events.

    Article  CAS  PubMed  Google Scholar 

  57. Motlagh, H.N., Wrabl, J.O., Li, J. & Hilser, V.J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Giraud, N., Bo, A., Lesage, A. & Blackledge, M. Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J. Am. Chem. Soc. 126, 11422–11423 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Zinkevich, T., Chevelkov, V., Reif, B., Saalwächter, K. & Krushelnitsky, A. Internal protein dynamics on ps to μs timescales as studied by multi-frequency 15N solid-state NMR relaxation. J. Biomol. NMR 57, 219–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Schanda, P., Huber, M., Boisbouvier, J., Meier, B.H. & Ernst, M. Solid-state NMR measurements of asymmetric dipolar couplings provide insight into protein side-chain motion. Angew. Chem. Int. Ed. Engl. 50, 11005–11009 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Haller, J.D. & Schanda, P. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. J. Biomol. NMR 57, 263–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agarwal, V., Xue, Y., Reif, B. & Skrynnikov, N.R. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed. J. Am. Chem. Soc. 130, 16611–16621 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Tollinger, M., Sivertsen, A.C., Meier, B.H., Ernst, M. & Schanda, P. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy. J. Am. Chem. Soc. 134, 14800–14807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sidhu, A., Surolia, A., Robertson, A.D. & Sundd, M. A hydrogen bond regulates slow motions in ubiquitin by modulating a β-turn flip. J. Mol. Biol. 411, 1037–1048 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Salvi, N., Ulzega, S., Ferrage, F. & Bodenhausen, G. Time scales of slow motions in ubiquitin explored by heteronuclear double resonance. J. Am. Chem. Soc. 134, 2481–2484 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Keedy, D.A. et al. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22, 899–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rejto, P.A. & Freer, S.T. Protein conformational substates from X-ray crystallography. Prog. Biophys. Mol. Biol. 66, 167–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Wilson, M.A. & Brunger, A.T. The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J. Mol. Biol. 301, 1237–1256 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Willis, B.T.M. & Pryor, A.W. Thermal Vibrations in Crystallography (Cambridge University Press, 1975).

  72. Poon, B.K. et al. Normal mode refinement of anisotropic thermal parameters for a supramolecular complex at 3.42-Å crystallographic resolution. Proc. Natl. Acad. Sci. USA 104, 7869–7874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schröder, G.F., Levitt, M. & Brunger, A.T. Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunger, A.T. et al. Improving the accuracy of macromolecular structure refinement at 7Å resolution. Structure 20, 957–966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schiffer, C.A., Huber, R., Wüthrich, K. & van Gunsteren, W.F. Simultaneous refinement of the structure of BPTI against NMR data measured in solution and X-ray diffraction data measured in single crystals. J. Mol. Biol. 241, 588–599 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Rinaldelli, M. et al. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. Acta Crystallogr. D Biol. Crystallogr. 70, 958–967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuzmanic, A., Pannu, N.S. & Zagrovic, B. X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals. Nat. Commun. 5, 3220 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kuriyan, J. et al. Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Proteins 10, 340–358 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Burling, F.T. & Brünger, A.T. Thermal motion and conformational disorder in protein crystal structures: comparison of multi-conformer and time-averaging models. Isr. J. Chem. 34, 165–175 (1994).

    Article  CAS  Google Scholar 

  80. Levin, E.J., Kondrashov, D.A., Wesenberg, G.E. & Phillips, G.N. Jr. Ensemble refinement of protein crystal structures. Structure 15, 1040–1052 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rader, S.D. & Agard, D.A. Conformational substates in enzyme mechanism: the 120 K structure of α-lytic protease at 1.5 Å resolution. Protein Sci. 6, 1375–1386 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gros, P., van Gunsteren, W.F. & Hol, W.G. Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. Science 249, 1149–1152 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Clarage, J.B. & Phillips, G.N. Cross-validation tests of time-averaged molecular dynamics refinements for determination of protein structures by X-ray crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 24–36 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Burnley, B.T., Afonine, P.V., Adams, P.D. & Gros, P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife 1, e00311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den Bedem, H., Dhanik, A., Latombe, J.-C. & Deacon, A.M. Modeling discrete heterogeneity in X-ray diffraction data by fitting multi-conformers. Acta Crystallogr. D Biol. Crystallogr. 65, 1107–1117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Terwilliger, T.C. et al. Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models. Acta Crystallogr. D Biol. Crystallogr. 63, 597–610 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  88. Stenkamp, R.E. & Jensen, L.H. Resolution revisited: limit of detail in electron density maps. Acta Crystallogr. A 40, 251–254 (1984).

    Article  Google Scholar 

  89. Fenwick, R.B., van den Bedem, H., Fraser, J.S. & Wright, P.E. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci. USA 111, E445–E454 (2014).This study establishes that a multiconformer crystallographic ensemble (ref. 85 ) at room temperature accurately reflects fast dynamics in solution by relating B factors to NMR order parameters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brüschweiler, R. & Wright, P.E. NMR order parameters of biomolecules: a new analytical representation and application to the Gaussian axial fluctuation model. J. Am. Chem. Soc. 116, 8426–8427 (1994).

    Article  Google Scholar 

  91. Clore, G.M. & Schwieters, C.D. Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small α/β protein: a unified picture of high probability, fast atomic motions in proteins. J. Mol. Biol. 355, 879–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Schneider, R. et al. Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy. Mol. Biosyst. 8, 58–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Krzeminski, M., Marsh, J.A., Neale, C., Choy, W.-Y. & Forman-Kay, J.D. Characterization of disordered proteins with ENSEMBLE. Bioinformatics 29, 398–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, S., Salmon, L. & Al-Hashimi, H.M. Measuring similarity between dynamic ensembles of biomolecules. Nat. Methods 11, 552–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chapman, H.N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirata, K. et al. Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL. Nat. Methods 11, 734–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Acbas, G., Niessen, K.A., Snell, E.H. & Markelz, A.G. Optical measurements of long-range protein vibrations. Nat. Commun. 5, 3076 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Wall, M.E., Adams, P.D., Fraser, J.S. & Sauter, N.K. Diffuse X-ray scattering to model protein motions. Structure 22, 182–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmidt, M. et al. Protein kinetics: structures of intermediates and reaction mechanism from time-resolved X-ray data. Proc. Natl. Acad. Sci. USA 101, 4799–4804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bowman, G.R., Huang, X. & Pande, V.S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49, 197–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bouvignies, G. et al. Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc. Natl. Acad. Sci. USA 102, 13885–13890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tollinger, M., Skrynnikov, N.R., Mulder, F.A., Forman-Kay, J.D. & Kay, L.E. Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 123, 11341–11352 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Lang, P.T., Holton, J.M., Fraser, J.S. & Alber, T. Protein structural ensembles are revealed by redefining X-ray electron density noise. Proc. Natl. Acad. Sci. USA 111, 237–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Eriksson, A.E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Mulder, F.A.A., Mittermaier, A., Hon, B., Dahlquist, F.W. & Kay, L.E. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Bouvignies, G. et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477, 111–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sekhar, A. & Kay, L.E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc. Natl. Acad. Sci. USA 110, 12867–12874 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Aboul-ela, F., Karn, J. & Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 24, 3974–3981 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kulinski, T. et al. The apical loop of the HIV-1 TAR RNA hairpin is stabilized by a cross-loop base pair. J. Biol. Chem. 278, 38892–38901 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Dethoff, E.A., Petzold, K., Chugh, J., Casiano-Negroni, A. & Al-Hashimi, H.M. Visualizing transient low-populated structures of RNA. Nature 491, 724–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Serrano, P. et al. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1393–1405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Klock, H.E. et al. Crystal structure of a conserved hypothetical protein (gi: 13879369) from Mouse at 1.90 Å resolution reveals a new fold. Proteins 61, 1132–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Vendruscolo and R. Ranganathan for stimulating discussions and to D.R. Hekstra and K.I. White, Green Center for Systems Biology, UT Southwestern Medical Center, for providing data for Figure 7. H.v.d.B. is supported by the US National Institute of General Medical Sciences Protein Structure Initiative (U54GM094586) at the Joint Center for Structural Genomics and by SLAC National Accelerator Laboratory LDRD (Laboratory Directed Research and Development) grant SLAC-LDRD-0014-13-2. J.S.F. is supported by US National Institutes of Health grants OD009180 and GM110580, US National Science Foundation grant STC-1231306, the Kinship Foundation Searle Scholar Program, the Pew Charitable Trusts Scholars Program and the David and Lucile Packard Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry van den Bedem or James S Fraser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Bedem, H., Fraser, J. Integrative, dynamic structural biology at atomic resolution—it's about time. Nat Methods 12, 307–318 (2015). https://doi.org/10.1038/nmeth.3324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing