Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cas9 as a versatile tool for engineering biology

Abstract

RNA-guided Cas9 nucleases derived from clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have dramatically transformed our ability to edit the genomes of diverse organisms. We believe tools and techniques based on Cas9, a single unifying factor capable of colocalizing RNA, DNA and protein, will grant unprecedented control over cellular organization, regulation and behavior. Here we describe the Cas9 targeting methodology, detail current and prospective engineering advances and suggest potential applications ranging from basic science to the clinic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functioning of the type II CRISPR-Cas systems in bacteria3.
Figure 2: Cas9-sgRNA targeting complexes.
Figure 3: Platform for multiplex biological screens.
Figure 4: Cas9 therapeutics.

References

  1. Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297 (2011).

    CAS  PubMed  Google Scholar 

  2. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).This work is one of the first demonstrations of engineering the type II CRISPR-Cas system to function in eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DiCarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ding, Q. et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12, 393–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gratz, S.J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J.F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W., Teng, F., Li, T. & Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).This work is one of the first demonstrations of engineering the type II CRISPR-Cas system to function in eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maeder, M.L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10.1038/nmeth.2598 (25 July 2013).

  21. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 10.1038/nbt.2675 (1 August 2013).

  22. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10.1038/nmeth.2600 (25 July 2013).

  23. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 10.1093/nar/gkt520 (12 June 2013).

  24. Terns, M.P. & Terns, R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). This paper describes deciphering the function of the CRISPR locus.

    Article  CAS  PubMed  Google Scholar 

  26. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).This work is a demonstration of role of guide RNAs in CRISPR targeting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hale, C.R. et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45, 292–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marraffini, L.A. & Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).This work is a demonstration of how CRISPR-Cas systems distinguish self versus non-self.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108, 10098–10103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).This is a report of the discovery and demonstration of tracrRNA function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).This paper reported the characterization of the Cas9-crRNA-tracrRNA complex in vitro ; it also demonstrated that the complex was sufficient for DNA targeting, and showed that Cas9 could be guided using single chimeric guide RNAs (sgRNAs).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beerli, R.R., Dreier, B. & Barbas, C.F. III. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maeder, M.L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Groth, A.C. & Calos, M.P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gaj, T., Mercer, A.C., Sirk, S.J., Smith, H.L. & Barbas, C.F. 3rd A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. 41, 3937–3946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 10.1038/nbt.2647 (21 July 2013).

  53. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 10.1038/nbt.2623 (23 June 2013).

  54. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 10.1038/nbt.2673 (11 August 2013).

  55. Makarova, K.S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, E. et al. Precision genome engineering with programmable DNA-nicking enzymes. Genome Res. 22, 1327–1333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramirez, C.L. et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40, 5560–5568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, J. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22, 1316–1326 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kleinstiver, B.P. et al. Monomeric site-specific nucleases for genome editing. Proc. Natl. Acad. Sci. USA 109, 8061–8066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esvelt, K.M., Carlson, J.C. & Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. USA 108, 10092–10097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 28, 1295–1299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Mali, P. et al. Barcoding cells using cell-surface programmable DNA-binding domains. Nat. Methods 10, 403–406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods (in the press).

  68. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verma, I.M. & Somia, N. Gene therapy–promises, problems and prospects. Nature 389, 239–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Grieger, J.C. & Samulski, R.J. Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv. Biochem. Eng. Biotechnol. 99, 119–145 (2005).

    CAS  PubMed  Google Scholar 

  73. Miyoshi, H., Takahashi, M., Gage, F.H. & Verma, I.M. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10319–10323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yeh, P. & Perricaudet, M. Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J. 11, 615–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Randow, F., MacMicking, J.D. & James, L.C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340, 701–706 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Aach and L. Yang for insightful discussions, and W.L. Chew for insightful discussions and critical reading of the manuscript. This work was supported by US National Institutes of Health NHGRI grant P50 HG005550, Department of Energy grant DE-FG02-02ER63445 and the Wyss Institute for Biologically Inspired Engineering (K.M.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant Mali or Kevin M Esvelt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mali, P., Esvelt, K. & Church, G. Cas9 as a versatile tool for engineering biology. Nat Methods 10, 957–963 (2013). https://doi.org/10.1038/nmeth.2649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2649

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research