Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular engineering of chiral colloidal liquid crystals using DNA origami

Abstract

Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origami-based cholesteric liquid crystals.
Figure 2: Origami filaments assemble into supramolecular 1D twisted ribbons.
Figure 3: Geometry of the constituent rods alone determines twisted-ribbon structure.
Figure 4: Mechanical properties of 1D twisted ribbons.
Figure 5: Phase diagram of an origami-depletant mixture.
Figure 6: Stimuli induced ribbon-to-membrane transition.

Similar content being viewed by others

References

  1. Pusey, P. N. & Van Megen, W. Phase-behavior of concentrated suspension of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    CAS  Google Scholar 

  2. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci. 51, 627–659 (1949).

    CAS  Google Scholar 

  3. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Google Scholar 

  4. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    CAS  Google Scholar 

  5. Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012).

    CAS  Google Scholar 

  6. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

  7. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  8. Mundoor, H., Senyuk, B. & Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 352, 69–73 (2016).

    CAS  Google Scholar 

  9. Muševič, I., Škarabot, M., Tkalec, U., Ravnik, M. & Žumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).

    Google Scholar 

  10. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  Google Scholar 

  11. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Google Scholar 

  12. Bai, X. C., Martin, T. G., Scheres, S. H. W. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).

    CAS  Google Scholar 

  13. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  Google Scholar 

  14. Lu, F., Yager, K. G., Zhang, Y. G., Xin, H. L. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).

    CAS  Google Scholar 

  15. Barry, E. & Dogic, Z. Entropy driven self-assembly of nonamphiphilic colloidal membranes. Proc. Natl Acad. Sci. USA 107, 10348–10353 (2010).

    CAS  Google Scholar 

  16. Gibaud, T. et al. Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012).

    CAS  Google Scholar 

  17. Sharma, P., Ward, A., Gibaud, T., Hagan, M. F. & Dogic, Z. Hierarchical organization of chiral rafts in colloidal membranes. Nature 513, 77–80 (2014).

    CAS  Google Scholar 

  18. Pfitzner, E. et al. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Ed. 52, 7766–7771 (2013).

    CAS  Google Scholar 

  19. Tortora, L. & Lavrentovich, O. D. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc. Natl Acad. Sci. USA 108, 5163–5168 (2011).

    CAS  Google Scholar 

  20. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    CAS  Google Scholar 

  21. Dogic, Z. & Fraden, S. Cholesteric phase in virus suspensions. Langmuir 16, 7820–7824 (2000).

    CAS  Google Scholar 

  22. Grelet, E. & Fraden, S. What is the origin of chirality in the cholesteric phase of virus suspensions? Phys. Rev. Lett. 90, 198302 (2003).

    Google Scholar 

  23. Purdy, K. R. et al. Measuring the nematic order of suspensions of colloidal fd virus by X-ray diffraction and optical birefringence. Phys. Rev. E 67, 031708 (2003).

    Google Scholar 

  24. Dogic, Z. & Fraden, S. Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition. Phil. Trans. R. Soc. A 359, 997–1014 (2001).

    CAS  Google Scholar 

  25. Purdy, K. R. & Fraden, S. Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge. Phys. Rev. E 70, 061703 (2004).

    Google Scholar 

  26. Tang, J. X. & Fraden, S. Isotropic-cholesteric phase-transition in colloidal suspension of filamentous bacteriophage-fd. Liq. Cryst. 19, 459–467 (1995).

    CAS  Google Scholar 

  27. Harris, A. B., Kamien, R. D. & Lubensky, T. C. Microscopic origin of cholesteric pitch. Phys. Rev. Lett. 78, 2867–2867 (1997).

    CAS  Google Scholar 

  28. Oda, R., Huc, I., Schmutz, M., Candau, S. & MacKintosh, F. Tuning bilayer twist using chiral counterions. Nature 399, 566–569 (1999).

    CAS  Google Scholar 

  29. Zanchetta, G. et al. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right-and left-handed director twist. Proc. Natl Acad. Sci. USA 107, 17497–17502 (2010).

    CAS  Google Scholar 

  30. Cao, J., Liu, S., Xiong, J., Chen, Y. & Zhang, Z. Stimuli responsive chiral liquid crystal phases of phenylboronic acid functionalized rodlike viruses and their interaction with biologically important diols. Chem. Commun. 50, 10402–10405 (2014).

    CAS  Google Scholar 

  31. Růžička, Š. & Wensink, H. H. Simulating the pitch sensitivity of twisted nematics of patchy rods. Soft Matter 12, 5205–5213 (2016).

    Google Scholar 

  32. Dussi, S. & Dijkstra, M. Entropy-driven formation of chiral nematic phases by computer simulations. Nat. Commun. 7, 11175 (2016).

    CAS  Google Scholar 

  33. Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    CAS  Google Scholar 

  34. Barry, E., Beller, D. & Dogic, Z. A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length. Soft Matter 5, 2563–2570 (2009).

    CAS  Google Scholar 

  35. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958).

    CAS  Google Scholar 

  36. Dalhaimer, P., Bates, F. S. & Discher, D. E. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 36, 6873–6877 (2003).

    CAS  Google Scholar 

  37. Ziserman, L., Mor, A., Harries, D. & Danino, D. Curvature instability in a chiral amphiphile self-assembly. Phys. Rev. Lett. 106, 238105 (2011).

    Google Scholar 

  38. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidiy of microtubules and actin-filaments measured from therma fluctuation in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Google Scholar 

  39. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    CAS  Google Scholar 

  40. Yang, Y. S., Barry, E., Dogic, Z. & Hagan, M. F. Self-assembly of 2D membranes from mixtures of hard rods and depleting polymers. Soft Matter 8, 707–714 (2012).

    CAS  Google Scholar 

  41. Kaplan, C. N., Tu, H., Pelcovits, R. A. & Meyer, R. B. Theory of depletion-induced phase transition from chiral smectic-A twisted ribbons to semi-infinite flat membranes. Phys. Rev. E 82, 021701 (2010).

    Google Scholar 

  42. Kang, L., Gibaud, T., Dogic, Z. & Lubensky, T. Entropic forces stabilize diverse emergent structures in colloidal membranes. Soft Matter 12, 386–401 (2016).

    CAS  Google Scholar 

  43. Nakata, M. et al. End-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexes. Science 318, 1276–1279 (2007).

    CAS  Google Scholar 

  44. Park, C-Y., Fygenson, D. K. & Saleh, O. A. Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes. Soft Matter 12, 5089–5095 (2016).

    CAS  Google Scholar 

  45. Frenkel, D. Entropy-driven phase transitions. Physica A 263, 26–38 (1999).

    CAS  Google Scholar 

  46. Rambaran, R. N. & Serpell, L. C. Amyloid fibrils Abnormal protein assembly. Prion 2, 112–117 (2008).

    Google Scholar 

  47. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    CAS  Google Scholar 

  48. Zhou, Y. et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    CAS  Google Scholar 

  49. Won, Y. Y., Davis, H. T. & Bates, F. S. Giant wormlike rubber micelles. Science 283, 960–963 (1999).

    CAS  Google Scholar 

  50. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  Google Scholar 

  51. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  52. Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. Engl. 53, 12735–12740 (2014).

    CAS  Google Scholar 

  53. Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient production of single-stranded phage DNA as scaffolds for DNA origami. Nano Lett. 15, 4672–4676 (2015).

    CAS  Google Scholar 

  54. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS  Google Scholar 

  55. Lau, A. W. C., Prasad, A. & Dogic, Z. Condensation of isolated semi-flexible filaments driven by depletion interactions. Europhys. Lett. 87, 48006 (2009).

    Google Scholar 

  56. Brangwynne, C. P. et al. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys. J. 93, 346–359 (2007).

    CAS  Google Scholar 

  57. Maniatis, T., Sambrook, J. & Fritsch, E. Molecular CloningCh 3 (Cold Spring Harbor Laboratory, 1989).

    Google Scholar 

  58. Lettinga, M. P., Barry, E. & Dogic, Z. Self-diffusion of rod-like viruses in the nematic phase. Europhys. Lett. 71, 692–698 (2005).

    CAS  Google Scholar 

  59. Oldenbourg, R. Polarized light field microscopy: an analytical method using a microlens array to simultaneously capture both conoscopic and orthoscopic views of birefringent objects. J. Microsc. 231, 419–432 (2008).

    CAS  Google Scholar 

  60. Barry, E., Hensel, Z., Dogic, Z., Shribak, M. & Oldenbourg, R. Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments. Phys. Rev. Lett. 96, 018305 (2006).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support of NSF-MRSEC-1420382 and NSF-DMR-1609742 (to M.S., M.J.Z. and Z.D). We also acknowledge use of the Brandeis MRSEC optical microscopy and biosynthesis facility supported by NSF-MRSEC-1420382, as well as a Hans Fisher Senior Fellowship from TUM Institute of Advanced Study. This work was also supported by a European Research Council Starting Grant to H.D. (GA no. 256270) and by the Deutsche Forschungsgemeinschaft through grants provided via the TUM Institute of Advanced Study, the Cluster of Integrated Protein Science, the Nano Initiative Munich, and the Gottfried-Wilhelm-Leibniz Program (C.H.W., F.P. and H.D.).

Author information

Authors and Affiliations

Authors

Contributions

H.D. and Z.D. conceived the experiments. M.S. and M.J.Z. performed initial experimental observations. M.S. performed all the experiments. C.H.W. designed and characterized origami filaments. Z.D., M.S., H.D., C.H.W. and M.J.Z. analysed the experimental data. F.P. developed methods to purify large quantities of scaffold and provided them for our studies. M.S., H.D. and Z.D. wrote the manuscript. All authors revised the manuscript.

Corresponding authors

Correspondence to Hendrik Dietz or Zvonimir Dogic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 243 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 3374 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 1584 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 3340 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 7060 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 611 kb)

Supplementary Movie 6

Supplementary Movie 6 (AVI 715 kb)

Supplementary Movie 7

Supplementary Movie 7 (AVI 1207 kb)

Supplementary Movie 8

Supplementary Movie 8 (AVI 6881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siavashpouri, M., Wachauf, C., Zakhary, M. et al. Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nature Mater 16, 849–856 (2017). https://doi.org/10.1038/nmat4909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing