Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures

Abstract

Usually, mechanochemical reactions between solid phases are either gradual (by deformation-induced mixing), or self-propagating (by exothermic chemical reaction). Here, by means of a systematic kinetic analysis of the Bi–Te system reacting to Bi2Te3, we establish a third possibility: if one or more of the powder reactants has a low melting point and low thermal effusivity, it is possible that local melting can occur from deformation-induced heating. The presence of hot liquid then triggers chemical mixing locally. The molten events are constrained to individual particles, making them distinct from self-propagating reactions, and occur much faster than conventional gradual reactions. We show that the mechanism is applicable to a broad variety of materials systems, many of which have important functional properties. This mechanistic picture offers a new perspective as compared to conventional, gradual mechanochemical synthesis, where thermal effects are generally ignored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bi melts locally under impact.
Figure 2: Reaction kinetics are driven by liquid Bi.
Figure 3: There is a strong thermal component to reaction kinetics.
Figure 4: The reaction is partially propagated by the enthalpy of mixing.
Figure 5: The kinetics of phase formation are much faster than typical mechanochemical reactions.
Figure 6: Other elements that could melt under mechanochemical processing.

Similar content being viewed by others

References

  1. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    CAS  Google Scholar 

  2. Seidel, C. A. M. & Kühnemuth, R. Mechanochemistry: molecules under pressure. Nat. Nanotech. 9, 164–165 (2014).

    CAS  Google Scholar 

  3. Sawyer, W. G., Argibay, N., Burris, D. L. & Krick, B. A. Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014).

    Google Scholar 

  4. Pastewka, L., Moser, S., Gumbsch, P. & Moseler, M. Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011).

    CAS  Google Scholar 

  5. Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001).

    CAS  Google Scholar 

  6. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    CAS  Google Scholar 

  7. Friščić, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013).

    Google Scholar 

  8. Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6, 6662 (2015).

    CAS  Google Scholar 

  9. Baláž, P. & Dutková, E. Fine milling in applied mechanochemistry. Miner. Eng. 22, 681–694 (2009).

    Google Scholar 

  10. McCormick, P. G. & Froes, F. H. The fundamentals of mechanochemical processing. JOM 50, 61–65 (1998).

    CAS  Google Scholar 

  11. Baláž, P. et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013).

    Google Scholar 

  12. Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511–516 (2004).

    CAS  Google Scholar 

  13. Xu, J., Herr, U., Klassen, T. & Averback, R. S. Formation of supersaturated solid solutions in the immiscible Ni–Ag system by mechanical alloying. J. Appl. Phys. 79, 3935–3945 (1996).

    CAS  Google Scholar 

  14. Gente, C., Oehring, M. & Bormann, R. Formation of thermodynamically unstable solid solutions in the Cu–Co system by mechanical alloying. Phys. Rev. B 48, 13244–13252 (1993).

    CAS  Google Scholar 

  15. Han, B. Q., Ye, J., Tang, F., Schoenung, J. & Lavernia, E. J. Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J. Mater. Sci. 42, 1660–1672 (2007).

    CAS  Google Scholar 

  16. Martin, G. & Bellon, P. Driven alloys. Solid State Phys. 50, 189–331 (1996).

    Google Scholar 

  17. Lund, A. C. & Schuh, C. A. Driven alloys in the athermal limit. Phys. Rev. Lett. 91, 235505 (2003).

    Google Scholar 

  18. Odunuga, S., Li, Y., Krasnochtchekov, P., Bellon, P. & Averback, R. S. Forced chemical mixing in alloys driven by plastic deformation. Phys. Rev. Lett. 95, 045901 (2005).

    CAS  Google Scholar 

  19. Vo, N. Q., Odunuga, S., Bellon, P. & Averback, R. S. Forced chemical mixing in immiscible alloys during severe plastic deformation at elevated temperatures. Acta Mater. 57, 3012–3019 (2009).

    CAS  Google Scholar 

  20. Ashkenazy, Y., Vo, N. Q., Schwen, D., Averback, R. S. & Bellon, P. Shear induced chemical mixing in heterogeneous systems. Acta Mater. 60, 984–993 (2012).

    CAS  Google Scholar 

  21. Xu, J., He, J. H. & Ma, E. Effect of milling temperature on mechanical alloying in the immiscible Cu–Ta system. Metall. Mater. Trans. A 28, 1569–1580 (1997).

    Google Scholar 

  22. Koch, C. C. The synthesis of non-equilibrium structures by ball-milling. Mater. Sci. Forum 88–90, 243–262 (1992).

    Google Scholar 

  23. Benjamin, J. S. Fundamentals of mechanical alloying. Mater. Sci. Forum 88–90, 1–18 (1992).

    Google Scholar 

  24. Takacs, L. Self-sustaining reactions induced by ball milling: an overview. Int. J. Self-Propag. High-Temp. Synth. 18, 276–282 (2010).

    Google Scholar 

  25. Takacs, L. Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47, 355–414 (2002).

    CAS  Google Scholar 

  26. Maurice, D. R. & Courtney, T. H. The physics of mechanical alloying: a first report. Metall. Trans. A 21, 289–303 (1990).

    Google Scholar 

  27. Lewandowski, J. J. & Greer, A. L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15–18 (2006).

    CAS  Google Scholar 

  28. Bowden, F. P. & Persson, P. A. Deformation, heating and melting of solids in high-speed friction. Proc. R. Soc. Lond. 260, 433–458 (1961).

    Google Scholar 

  29. Gerasimov, K. B. & Boldyrev, V. V. On mechanism of new phases formation during mechanical alloying of Ag–Cu, Al–Ge and Fe–Sn systems. Mater. Res. Bull. 31, 1297–1305 (1996).

    CAS  Google Scholar 

  30. Urakaev, F. K. & Boldyrev, V. V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol. 107, 93–107 (2000).

    CAS  Google Scholar 

  31. Delogu, F. A possible alloying mechanism in idealized collisions between Cu and Sn crystals. Chem. Phys. Lett. 521, 125–129 (2012).

    CAS  Google Scholar 

  32. Delogu, F. & Cocco, G. Crystallite size refinement in elemental species under mechanical processing conditions. Mater. Sci. Eng. A 422, 198–204 (2006).

    Google Scholar 

  33. Delogu, F., Schiffini, L. & Cocco, G. The invariant laws of the amorphization processes by mechanical alloying. Phil. Mag. A 81, 1917–1937 (2001).

    CAS  Google Scholar 

  34. Morgant, G., Feutelais, Y., Legendre, B., Castanet, R. & Coulet, A. Themodynamic behaviour of Bi–Te alloys. Z. Fuer Met. Res. Adv. Tech. 81, 44–48 (1990).

    CAS  Google Scholar 

  35. Misra, S. & Bever, M. B. On the solid solutions of bismuth telluride and bismuth selenide. J. Phys. Chem. Solids 25, 1233–1241 (1964).

    CAS  Google Scholar 

  36. Humphry-Baker, S. A. & Schuh, C. A. The nanocrystalline thermoelectric compound Bi2Te3 forms by a particle-wise explosive reaction during mechanical alloying. Scr. Mater. 65, 516–519 (2011).

    CAS  Google Scholar 

  37. Su, X. et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat. Commun. 5, 4908 (2014).

    CAS  Google Scholar 

  38. Takacs, L. Ball milling-induced combustion in powder mixtures containing titanium, zirconium, or hafnium. J. Solid State Chem. 125, 75–84 (1996).

    CAS  Google Scholar 

  39. Delogu, F. & Takacs, L. Mechanochemistry of Ti–C powder mixtures. Acta Mater. 80, 435–444 (2014).

    CAS  Google Scholar 

  40. Schwarz, R. B. & Koch, C. C. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl. Phys. Lett. 49, 146–148 (1986).

    CAS  Google Scholar 

  41. Shackelford, J. F. & Alexander, W. CRC Materials Science and Engineering Handbook (CRC Press, 2001).

    Google Scholar 

  42. Abdellaoui, M. & Gaffet, E. The physics of mechanical alloying in a modified horizontal rod mill: mathematical treatment. Acta Mater. 44, 725–734 (1996).

    CAS  Google Scholar 

  43. Monagheddu, M., Doppiu, S. & Cocco, G. MSR reduction of hexachlorobenzene. J. Mater. Synth. Process. 8, 295–300 (2000).

    CAS  Google Scholar 

  44. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International); http://www.asminternational.org/materials-resources/results/-/journal_content/56/10192/06182G/PUBLICATION

  45. Tschakarov, C. G., Gospodinov, G. G. & Bontschev, Z. Über den Mechanismus der mechanochemischen Synthese anorganischer Verbindungen. J. Solid State Chem. 41, 244–252 (1982).

    Google Scholar 

  46. Ramasamy, K., Malik, M. A., Revaprasadu, N. & O’Brien, P. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 25, 3551–3569 (2013).

    CAS  Google Scholar 

  47. Musu, E., Mura, G., Ligios, G. & Delogu, F. Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi. J. Alloys Compd. 576, 80–85 (2013).

    CAS  Google Scholar 

  48. Delogu, F. & Cocco, G. Kinetics of structural evolution in immiscible Ag–Cu and Co–Cu systems under mechanical processing conditions. Mater. Sci. Eng. A 402, 208–214 (2005).

    Google Scholar 

  49. Delogu, F., Mulas, G., Schiffini, L. & Cocco, G. Mechanical work and conversion degree in mechanically induced processes. Mater. Sci. Eng. A 382, 280–287 (2004).

    Google Scholar 

Download references

Acknowledgements

F.D. and S.G. are grateful to Prof. Stefano Enzo, Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, for his help in the quantitative analysis of XRD patterns. This material is partially based on work supported as part of the ‘Solid State Solar-Thermal Energy Conversion Center (S3TEC)’, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001299 (S.A.H.-B. and C.A.S.). The material is also partially supported by the Universities of Cagliari and Sassari (F.D. and S.G., respectively).

Author information

Authors and Affiliations

Authors

Contributions

F.D., S.G. and S.A.H.-B. designed and performed experiments; F.D., C.A.S. and S.A.H.-B. analysed the data and co-wrote the manuscript.

Corresponding author

Correspondence to Samuel A. Humphry-Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphry-Baker, S., Garroni, S., Delogu, F. et al. Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures. Nature Mater 15, 1280–1286 (2016). https://doi.org/10.1038/nmat4732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing