Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrusion rheology in grains and other flowable materials

This article has been updated

Abstract

The interaction of intruding objects with deformable materials arises in many contexts, including locomotion in fluids and loose media, impact and penetration problems, and geospace applications. Despite the complex constitutive behaviour of granular media, forces on arbitrarily shaped granular intruders are observed to obey surprisingly simple, yet empirical ‘resistive force hypotheses’. The physics of this macroscale reduction, and how it might play out in other media, has however remained elusive. Here, we show that all resistive force hypotheses in grains arise from local frictional yielding, revealing a novel invariance within a class of plasticity models. This mechanical foundation, supported by numerical and experimental validations, leads to a general analytical criterion to determine which rheologies can obey resistive force hypotheses. We use it to explain why viscous fluids are observed to perform worse than grains, and to predict a new family of resistive-force-obeying materials: cohesive media such as pastes, gels and muds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretically predicted intrusion flow fields.
Figure 2: Theoretically predicted versus experimentally obtained resistive force plots.
Figure 3: Demonstration of the superposition principle arising from the continuum model.
Figure 4: Validity check for superposition in 3D.
Figure 5: Schematic of an RFT litmus test geometry.

Similar content being viewed by others

Change history

  • 11 October 2016

    In the version of this Article originally published, an equation for the resistive force in cohesive media, located in the text between equations (6) and (7), should not have included a dependence of the constant yield stress, τy, within the function. This has been corrected in all versions of the Article.

References

  1. Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    Article  CAS  Google Scholar 

  2. Vogel, S. Life in Moving Fluids: The Physical Biology of Flow (Princeton Univ. Press, 1996).

    Google Scholar 

  3. Lauder, G. V., Nauen, J. C. & Drucker, E. G. Experimental hydrodynamics and evolution: function of median fins in ray-finned fishes. Integr. Comp. Biol. 42, 1009–1017 (2002).

    Article  Google Scholar 

  4. Wang, Z. J. Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183–210 (2005).

    Article  Google Scholar 

  5. Li, C., Zhang, T. & Goldman, D. I. A terradynamics of legged locomotion on granular media. Science 339, 1408–1412 (2013).

    Article  CAS  Google Scholar 

  6. Thorpe, S. K., Holder, R. & Crompton, R. Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science 316, 1328–1331 (2007).

    Article  CAS  Google Scholar 

  7. Biewener, A. A. Biomechanics of mammalian terrestrial locomotion. Science 250, 1097–1103 (1990).

    Article  CAS  Google Scholar 

  8. Bhushan, B. Biomimetics: lessons from nature–an overview. Phil. Trans. R. Soc. A 367, 1445–1486 (2009).

    Article  CAS  Google Scholar 

  9. Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013).

    Article  CAS  Google Scholar 

  10. Williams, B. J., Anand, S. V., Rajagopalan, J. & Saif, M. T. A. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5 (2014).

  11. Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    Article  CAS  Google Scholar 

  12. Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325, 314–318 (2009).

    Article  CAS  Google Scholar 

  13. Bekker, M. G. Off-the-road locomotion: Research and Development in Terramechanics (Univ. Michigan Press, 1960).

    Google Scholar 

  14. Meirion-Griffith, G. & Spenko, M. Aerospace Conference, 2010 IEEE 1–6 (IEEE, 2010).

    Book  Google Scholar 

  15. Johnson, L. & King, R. Measurement of force to excavate extraterrestrial regolith with a small bucket-wheel device. J. Terramechanics 47, 87–95 (2010).

    Article  Google Scholar 

  16. Wong, J. Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth. J. Terramechanics 49, 49–61 (2012).

    Article  Google Scholar 

  17. Uehara, J., Ambroso, M., Ojha, R. & Durian, D. Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301 (2003).

    Article  CAS  Google Scholar 

  18. Shergold, O. A. & Fleck, N. A. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences Vol. 460, 3037–3058 (The Royal Society, 2004).

    Google Scholar 

  19. Gray, J. & Hancock, G. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955).

    Google Scholar 

  20. Lighthill, J. Mathematica Biofluiddynamics (SIAM, 1975).

    Book  Google Scholar 

  21. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    Article  Google Scholar 

  22. Ding, Y., Gravish, N. & Goldman, D. I. Drag induced lift in granular media. Phys. Rev. Lett. 106, 028001 (2011).

    Article  Google Scholar 

  23. Maladen, R. D., Ding, Y., Umbanhowar, P. B., Kamor, A. & Goldman, D. I. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. R. Soc. Interface. 8, 1332–1345 (2011).

    Article  Google Scholar 

  24. Rodenborn, B., Chen, C.-H., Swinney, H. L., Liu, B. & Zhang, H. Propulsion of microorganisms by a helical flagellum. Proc. Natl Acad. Sci. USA 110, E338–E347 (2013).

    Article  CAS  Google Scholar 

  25. Schofield, A. N. & Wroth, C. P. Critical State Soil Mechanics (McGraw-Hill, 1968).

    Google Scholar 

  26. Kamrin, K. Nonlinear elasto-plastic model for dense granular flow. Int. J. Plast. 26, 167–188 (2010).

    Article  CAS  Google Scholar 

  27. Kamrin, K. & Koval, G. Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012).

    Article  Google Scholar 

  28. Henann, D. L. & Kamrin, K. A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110, 6730–6735 (2013).

    Article  CAS  Google Scholar 

  29. Chen, W.-F. Limit Analysis and Soil Plasticity (Elsevier, 2013).

    Google Scholar 

  30. Guillard, F., Forterre, Y. & Pouliquen, O. Depth-independent drag force induced by stirring in granular media. Phys. Rev. Lett. 110, 138303 (2013).

    Article  Google Scholar 

  31. Brzinski III, T., Mayor, P. & Durian, D. Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111, 168002 (2013).

    Article  Google Scholar 

  32. Hill, R. New horizons in the mechanics of solids. J. Mech. Phys. Solids 5, 66–74 (1956).

    Article  Google Scholar 

  33. Dassault Systèmes Simulia, Providence, RI Abaqus Reference Manuals 6. 11 edn (2011).

  34. Goldman, D. I. Colloquium: Biophysical principles of undulatory self-propulsion in granular media. Rev. Mod. Phys. 86, 943–958 (2014).

    Article  Google Scholar 

  35. Kinloch, I. A., Roberts, S. A. & Windle, A. H. A rheological study of concentrated aqueous nanotube dispersions. Polymer 43, 7483–7491 (2002).

    Article  CAS  Google Scholar 

  36. Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D. & Repette, W. L. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487–2491 (2009).

    Article  Google Scholar 

  37. Dzuy, N. Q. & Boger, D. V. Yield stress measurement for concentrated suspensions. J. Rheol. 27, 321–349 (1983).

    Article  Google Scholar 

  38. Nedderman, R. M. Statics and Kinematics of Granular Materials (Cambridge Univ. Press, 2005).

    Google Scholar 

  39. Marvi, H. et al. Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science 346, 224–229 (2014).

    Article  CAS  Google Scholar 

  40. Adkins, C. N. & Liebeck, R. H. Design of optimum propellers. AIAA Paper 83–0190 (1983).

Download references

Acknowledgements

K.K. and H.A. gratefully acknowledge support from Army Research Office Grants W911NF-14-1-0205 and W911NF-15-1-0196.

Author information

Authors and Affiliations

Authors

Contributions

K.K. conceived the study and supervised the project. H.A. developed the computational routines and conducted the numerical modelling. K.K. and H.A. jointly performed the analysis and wrote the paper.

Corresponding author

Correspondence to Ken Kamrin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 385 kb)

Supplementary Information

Supplementary Information (TXT 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, H., Kamrin, K. Intrusion rheology in grains and other flowable materials. Nature Mater 15, 1274–1279 (2016). https://doi.org/10.1038/nmat4727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing